1,683 research outputs found

    A Review of Hypersonic Boundary Layer Stability Experiments in a Quiet Mach 6 Wind Tunnel

    Get PDF
    Three recent experimental studies of transition on cones with adverse pressure gradient produced by a flared afterbody and with the additive stability modifiers of wall cooling, angle of attack and bluntness are reviewed. All tests were conducted in a quiet Mach 6 wind tunnel. The dominant instability was found to be the second mode. For the cases examined with linear stability theory, the N factors at mode saturation were in the range of 8.5 to 11. Evidence of a combined second-mode/Gortler transition process was found. Mean, rms and spectral freestream data for the quiet facility is presented and the role of low frequency freestream noise is discussed

    Wall turbulence control

    Get PDF
    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation

    A quiet tunnel investigation of hypersonic boundary-layer stability over a cooled, flared cone

    Get PDF
    A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions

    Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow-Part II

    Get PDF
    The interaction of on-axis and o -axis laser discharge in front of a hemisphere cylinder in Mach 2.0 ow is investigated numerically. Details of the physics of the interaction of the laser-induced shock and the heated region with the bow shock and its e ect on drag reduction are included. The energetic eciency of the laser discharge in reducing drag is calculated

    Frictional quantum decoherence

    Full text link
    The dynamics associated with a measurement-based master equation for quantum Brownian motion are investigated. A scheme for obtaining time evolution from general initial conditions is derived. This is applied to analyze dissipation and decoherence in the evolution of both a Gaussian and a Schr\"{o}dinger cat initial state. Dependence on the diffusive terms present in the master equation is discussed with reference to both the coordinate and momentum representations.Comment: 18 pages, 7 figure

    Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows

    Get PDF
    Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented

    Complex Periodic Orbits and Tunnelling in Chaotic Potentials

    Full text link
    We derive a trace formula for the splitting-weighted density of states suitable for chaotic potentials with isolated symmetric wells. This formula is based on complex orbits which tunnel through classically forbidden barriers. The theory is applicable whenever the tunnelling is dominated by isolated orbits, a situation which applies to chaotic systems but also to certain near-integrable ones. It is used to analyse a specific two-dimensional potential with chaotic dynamics. Mean behaviour of the splittings is predicted by an orbit with imaginary action. Oscillations around this mean are obtained from a collection of related orbits whose actions have nonzero real part

    Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    Get PDF
    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications

    The dog as an animal model for bladder and urethral urothelial carcinoma: comparative epidemiology and histology

    Get PDF
    Despite the recent approval of several novel agents for patients with metastatic urothelial carcinoma (UC), survival in this setting remains poor. As such, continued investigation into novel therapeutic options remains warranted. Pre clinical development of novel treatments requires an animal model that accurately simulates the disease in humans. The aim of the present study was to evaluate the dog as an animal model for human UC. A total of 260 cases of spontaneous, untreated canine primary urethral and urinary bladder UC, were epide¬miologically and histologically assessed and classified based on the current 2016 World Health Organization (WHO) tumor classification system. Canine data was compared with human data available from scientific literature. The mean age of dogs diagnosed with UC was 10.22 years (range, 4 15 years), which is equivalent to 60 70 human years. The results revealed a high association between UC diagnosis with the female sex [odds ratio (OR) 3.51; 95% confidence interval (CI) 2.57 4.79; P<0.001], surgical neutering (OR 4.57; 95% CI 1.87 11.12; P<0.001) and breed (OR 15.11 for Scottish terriers; 95% CI 8.99 25.41; P<0.001). Based on the 2016 WHO tumor (T), node and metastasis staging system, the primary tumors were characterized as T1 (38%), T2a (28%), T2b (13%) and T3 (22%). Non papillary, flat subgross tumor growth was strongly associated with muscle invasion (OR 31.00; P<0.001). Irrespective of subgross growth pattern, all assessable tumors were invading beyond the basement membrane compatible with infiltrating UC. Conventional, not further classifiable infiltrating UC was the most common type of tumor (90%), followed by UC with divergent, squamous and/or glandular differentiation (6%). Seven out of the 260 (2.8%) cases were classified as non urothelial based on their histological morphology. These cases included 5 (2%) squamous cell carci¬nomas, 1 (0.4%) adenocarcinoma and 1 (0.4%) neuroendocrine tumor. The 2 most striking common features of canine and human UC included high sex predilection and histological tumor appearance. The results support the suitability of the dog as an animal model for UC and confirm that dogs also spontaneously develop rare UC subtypes and bladder tumors, including plasmacytoid UC and neuroendocrine tumor, which are herein described for the first time in a non experimental animal species
    • …
    corecore