1,537 research outputs found
Phylogenetic relationships of African Caecilians (Amphibia: Gymnophiona): insights from mitochondrial rRNA gene sequences
Africa (excluding the Seychelles) has a diverse caecilian fauna, including the endemic family Scolecomorphidae and six endemic genera of the more cosmopolitan Caeciliidae. Previous molecular phylogenetic studies have not included any caecilians from the African mainland. Partial 12S and 16S mitochondrial gene sequences were obtained for two species of the endemic African Scolecomorphidae and five species and four genera of African Caeciliids, aligned against previously reported sequences for 16 caecilian species, and analysed using parsimony, maximum likelihood, Bayesian and distance methods. Results are in agreement with traditional taxonomy in providing support for the monophyly of the African Caeciliid genera Boulengerula and Schistometopum and for the Scolecomorphidae. They disagree in indicating that the Caeciliidae is paraphyletic with respect to the Scolecomorphidae. Although more data from morphology and/or molecules will be required to resolve details of the interrelationships of the African caecilian genera, the data provide strong support for at least two origins of caecilians in which the eye is reduced and covered with bone, and do not support the hypotheses that the caecilian assemblages of Africa, and of East and of West Africa are monophyletic
Polarizability and Absorption of Small Conducting Particles in a Time-Varying Electromagnetic Field
We study small conducting particles and thin films in an oscillating
longitudinal electric field. We find the charge, current, and field
distribution in the particle, the polarizability and the electric dipole
absorption. We account for Thomas-Fermi screening by adding a Fick's diffusion
term to Ohm's law. Alternatively, we describe a particle as a dielectric body
with a non-local dielectric constant which is derived in a microscopic
linear-response theory. We show that both approaches are equivalent.Comment: 14 page
VanVleck Response Of A Two-Level System And Mesoscopic Orbital Magnetism Of Small Metals
We evaluate the mean value of the van Vleck response of a two-level system
with level spacing distribution and argue that it describes the orbital
magnetism of small conducting particles.Comment: 6 page
Cosmological parameter estimation using Very Small Array data out to ℓ= 1500
We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other cosmic microwave background (CMB) data and external priors. Within the flat Λ cold dark matter (ΛCDM) model, we find that the inclusion of high-resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by the Wilkinson Microwave Anisotropy Probe (WMAP) alone, while still remaining compatible with their estimates. We find that Ωbh2= 0.0234+0.0012−0.0014, Ωdmh2= 0.111+0.014−0.016, h= 0.73+0.09−0.05, nS= 0.97+0.06−0.03, 1010AS= 23+7−3 and τ= 0.14+0.14−0.07 for WMAP and VSA when no external prior is included. On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95 per cent confidence ( nrun=−0.069 ± 0.032 ), something that is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fν < 0.087 at 95 per cent confidence, which corresponds to mν < 0.32 eV when all neutrino masses are equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun < 0 is only marginal within this model
Natural variation in ovule morphology is influenced by multiple tissues and impacts downstream grain development in barley (Hordeum vulgare L.).
The ovule plays a critical role in cereal yield as it is the site of fertilization and the progenitor of the grain. The ovule primordium is generally comprised of three domains, the funiculus, chalaza, and nucellus, which give rise to distinct tissues including the integuments, nucellar projection, and embryo sac. The size and arrangement of these domains varies significantly between model eudicots, such as Arabidopsis thaliana, and agriculturally important monocotyledonous cereal species, such as Hordeum vulgare (barley). However, the amount of variation in ovule development among genotypes of a single species, and its functional significance, remains unclear. To address this, wholemount clearing was used to examine the details of ovule development in barley. Nine sporophytic and gametophytic features were examined at ovule maturity in a panel of 150 European two-row spring barley genotypes, and compared with grain traits from the preceding and same generation. Correlations were identified between ovule traits and features of grain they produced, which in general highlighted a negative correlation between nucellus area, ovule area, and grain weight. We speculate that the amount of ovule tissue, particularly the size of the nucellus, may affect the timing of maternal resource allocation to the fertilized embryo sac, thereby influencing subsequent grain development.Laura G. Wilkinson, Xiujuan Yang, Rachel A. Burton, Tobias Würschum and Matthew R. Tucke
Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling
The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose
spacings fluctuate with the number of electrons. We derive the
temperature-dependence of these fluctuations in the statistical regime and
compare with recent experimental results. The scrambling due to Coulomb
interactions of the single-particle spectrum with the addition of an electron
to the dot is shown to affect the temperature-dependence of the peak spacing
fluctuations. Spectral scrambling also leads to saturation in the temperature
dependence of the peak-to-peak correlator, in agreement with recent
experimental results. The signatures of scrambling are derived using discrete
Gaussian processes, which generalize the Gaussian ensembles of random matrices
to systems that depend on a discrete parameter -- in this case, the number of
electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe
Conductance Peak Height Correlations for a Coulomb-Blockaded Quantum Dot in a Weak Magnetic Field
We consider statistical correlations between the heights of conductance peaks
corresponding to two different levels in a Coulomb-blockaded quantum dot.
Correlations exist for two peaks at the same magnetic field if the field does
not fully break time-reversal symmetry as well as for peaks at different values
of a magnetic field that fully breaks time-reversal symmetry. Our results are
also relevant to Coulomb-blockade conductance peak height statistics in the
presence of weak spin-orbit coupling in a chaotic quantum dot.Comment: 5 pages, 3 figures, REVTeX 4, accepted for publication in Phys. Rev.
The propagation of a cultural or biological trait by neutral genetic drift in a subdivided population
We study fixation probabilities and times as a consequence of neutral genetic
drift in subdivided populations, motivated by a model of the cultural
evolutionary process of language change that is described by the same
mathematics as the biological process. We focus on the growth of fixation times
with the number of subpopulations, and variation of fixation probabilities and
times with initial distributions of mutants. A general formula for the fixation
probability for arbitrary initial condition is derived by extending a duality
relation between forwards- and backwards-time properties of the model from a
panmictic to a subdivided population. From this we obtain new formulae,
formally exact in the limit of extremely weak migration, for the mean fixation
time from an arbitrary initial condition for Wright's island model, presenting
two cases as examples. For more general models of population subdivision,
formulae are introduced for an arbitrary number of mutants that are randomly
located, and a single mutant whose position is known. These formulae contain
parameters that typically have to be obtained numerically, a procedure we
follow for two contrasting clustered models. These data suggest that variation
of fixation time with the initial condition is slight, but depends strongly on
the nature of subdivision. In particular, we demonstrate conditions under which
the fixation time remains finite even in the limit of an infinite number of
demes. In many cases - except this last where fixation in a finite time is seen
- the time to fixation is shown to be in precise agreement with predictions
from formulae for the asymptotic effective population size.Comment: 17 pages, 8 figures, requires elsart5p.cls; substantially revised and
improved version; accepted for publication in Theoretical Population Biolog
New determination of the D0→K−π+π0 and D0→K−π+π+π− coherence factors and average strong-phase differences
AbstractMeasurements of the coherence factors (RKππ0 and RK3π) and the average strong-phase differences (δDKππ0 and δDK3π) for the decays D0→K−π+π0 and D0→K−π+π+π− are presented. These parameters are important inputs to the determination of the unitarity triangle angle γ in B∓→DK∓ decays, where D designates a D0 or D¯0 meson decaying to a common final state. The measurements are made using quantum correlated DD¯ decays collected by the CLEO-c experiment at the ψ(3770) resonance, and augment a previously published analysis by the inclusion of new events in which the signal decay is tagged by the mode D→KS0π+π−. The measurements also benefit from improved knowledge of external inputs, namely the D0D¯0 mixing parameters, rDKπ and several D-meson branching fractions. The measured values are RKππ0=0.82±0.07, δDKππ0=(164−14+20)°, RK3π=0.32−0.28+0.20 and δDK3π=(225−78+21)°. Consideration is given to how these measurements can be improved further by using the larger quantum-correlated data set collected by BESIII
- …