4,826 research outputs found

    Leaves of High Yielding Perennial Ryegrass Contain Less Aggregated Rubisco than S23

    Get PDF
    Breeding diploid perennial ryegrass for improved dry matter yield under nitrogen-limiting conditions has reduced the nitrogen (N) concentration of the herbage (Wilkins et al., 2003). Reduced N concentration in the ruminant diet is one potential way to reduce losses of N to the environment by reducing the amount of N that animals excrete. The underlying physiological basis of this increased N-use efficiency in ryegrass was investigated

    Leaves of High Yielding Perennial Ryegrass Contain Less Aggregated Rubisco Than S23

    Get PDF
    Breeding diploid perennial ryegrass for improved dry matter yield under nitrogen-limiting conditions has reduced the nitrogen (N) concentration of the herbage (Wilkins et al., 2003). Reduced N concentration in the ruminant diet is one potential way to reduce losses of N to the environment by reducing the amount of N that animals excrete. The underlying physiological basis of this increased N-use efficiency in ryegrass was investigated

    Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress

    Get PDF
    Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic beta-Sn phase under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare the results to density functional calculations employing the LDA, PBE, PW91, WC, AM05, PBEsol and HSE06 exchange-correlation functionals. Diffusion Monte Carlo predicts a transition pressure of 14.0 +- 1.0 GPa slightly above the experimentally observed transition pressure range of 11.3 to 12.6 GPa. The HSE06 hybrid functional predicts a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals using the local-density approximation and generalized-gradient approximations result in transition pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the equilibrium transition pressure and may explain the discrepancy between the various experimental values as well as the small overestimate of the quantum Monte Carlo transition pressure

    Effects of morphology on phonons of nanoscopic silver grains

    Get PDF
    The morphology of nanoscopic Ag grains significantly affects the phonons. Atomistic simulations show that realistic nanograin models display complex vibrational properties. (1) Single-crystalline grains. Nearly-pure torsional and radial phonons appear at low frequencies. For low-energy, faceted models, the breathing mode and acoustic gap (lowest frequency) are about 10% lower than predicted by elasticity theory (ET) for a continuum sphere of the same volume. The sharp edges and the atomic lattice split the ET-acoustic-gap quintet into a doublet and triplet. The surface protrusions associated with nearly spherical, high-energy models produce a smaller acoustic gap and a higher vibrational density of states (DOS) at frequencies \nu<2 THz. (2) Twined icosahedra. In contrast to the single-crystal case, the inherent strain produce a larger acoustic gap, while the core atoms yield a DOS tail extending beyond the highest frequency of single-crystalline grains. (3) Mark's decahedra, in contrast to (1) and (2), do not have a breathing mode; although twined and strained, do not exhibit a high-frequency tail in the DOS. (4) Irregular nanograins. Grain boundaries and surface disorder yield non-degenerate phonon frequencies, and significantly smaller acoustic gap. Only these nanograins exhibit a low-frequency \nu^2 DOS in the interval 1-2 THz.Comment: Version published in Phys. Rev.

    Response to pulmonary arterial hypertension drug therapies in patients with pulmonary arterial hypertension and cardiovascular risk factors.

    Get PDF
    The age at diagnosis of pulmonary arterial hypertension (PAH) and the prevalence of cardiovascular (CV) risk factors are increasing. We sought to determine whether the response to drug therapy was influenced by CV risk factors in PAH patients. We studied consecutive incident PAH patients (n = 146) between January 1, 2008, and July 15, 2011. Patients were divided into two groups: the PAH-No CV group included patients with no CV risk factors (obesity, systemic hypertension, type 2 diabetes mellitus, permanent atrial fibrillation, mitral and/or aortic valve disease, and coronary artery disease), and the PAH-CV group included patients with at least one. The response to PAH treatment was analyzed in all the patients who received PAH drug therapy. The PAH-No CV group included 43 patients, and the PAH-CV group included 69 patients. Patients in the PAH-No CV group were younger than those in the PAH-CV group (P < 0.0001). In the PAH-No CV group, 16 patients (37%) improved on treatment and 27 (63%) did not improve, compared with 11 (16%) and 58 (84%) in the PAH-CV group, respectively (P = 0.027 after adjustment for age). There was no difference in survival at 30 months (P = 0.218). In conclusion, in addition to older age, CV risk factors may predict a reduced response to PAH drug therapy in patients with PAH

    Resonant X-Ray Scattering on the M-Edge Spectra from Triple-k Structure Phase in U_{0.75}Np_{0.25}O_{2} and UO_{2}

    Full text link
    We derive an expression for the scattering amplitude of resonant x-ray scattering under the assumption that the Hamiltonian describing the intermediate state preserves spherical symmetry. On the basis of this expression, we demonstrate that the energy profile of the RXS spectra expected near U and Np M_4 edges from the triple-k antiferromagnetic ordering phase in UO_{2} and U_{0.75}Np_{0.25}O_{2} agree well with those from the experiments. We demonstrate that the spectra in the \sigma-\sigma' and \sigma-\pi' channels exhibit quadrupole and dipole natures, respectively.Comment: 3 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Supp

    Keldysh study of point-contact tunneling between superconductors

    Full text link
    We revisit the problem of point-contact tunnel junctions involving one-dimensional superconductors and present a simple scheme for computing the full current-voltage characteristics within the framework of the non-equilibrium Keldysh Green function formalism. We address the effects of different pairing symmetries combined with magnetic fields and finite temperatures at arbitrary bias voltages. We discuss extensively the importance of these results for present-day experiments. In particular, we propose ways of measuring the effects found when the two sides of the junction have dissimilar superconducting gaps and when the symmetry of the superconducting states is not the one of spin-singlet pairing. This last point is of relevance for the study of the superconducting state of certain organic materials like the Bechgaard salts and, to some extent, for ruthenium compounds.Comment: 10 pages, 4 figure
    corecore