118 research outputs found

    Cerebellar dysfunction in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs contribute significantly to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are particularly difficult to treat. Increasing knowledge concerning the pathophysiology of cerebellar disease in MS from human postmortem studies, experimental models, and clinical trials has raised the hope that cerebellar symptoms will be better treated in the future

    Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment

    Get PDF
    Although significant advances have recently been made in the understanding and treatment of multiple sclerosis, reduction of long-term disability remains a key goal. Evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage in the disease. Invading inflammatory cells, as well as resident central nervous system cells, release a number of reactive oxygen and nitrogen species which cause demyelination and axonal destruction, the pathological hallmarks of multiple sclerosis. Reduction in oxidative damage is an important therapeutic strategy to slow or halt disease processes. Many drugs in clinical practice or currently in trial target this mechanism. Cell-based therapies offer an alternative source of antioxidant capability. Classically thought of as being important for myelin or cell replacement in multiple sclerosis, stem cells may, however, have a more important role as providers of supporting factors or direct attenuators of the disease. In this paper we focus on the antioxidant properties of mesenchymal stem cells and discuss their potential importance as a cell-based therapy for multiple sclerosis

    Can the optic nerve be repaired?

    Get PDF

    Purkinje cell injury, structural plasticity and fusion in patients with Friedreich's ataxia

    Get PDF
    Purkinje cell pathology is a common finding in a range of inherited and acquired cerebellar disorders, with the degree of Purkinje cell injury dependent on the underlying aetiology. Purkinje cells have an unparalleled resistance to insult and display unique regenerative capabilities within the central nervous system. Their response to cell injury is not typical of most neurons and likely represents both degenerative, compensatory and regenerative mechanisms. Here we present a pathological study showing novel and fundamental insights into Purkinje cell injury, remodelling and repair in Friedreich’s ataxia; the most common inherited ataxia. Analysing post-mortem cerebellum tissue from patients who had Friedreich's ataxia, we provide evidence of significant injury to the Purkinje cell axonal compartment with relative preservation of both the perikaryon and its extensive dendritic arborisation. Axonal remodelling of Purkinje cells was clearly elevated in the disease. For the first time in a genetic condition, we have also shown a disease-related increase in the frequency of Purkinje cell fusion and heterokaryon formation in Friedreich's ataxia cases; with evidence that underlying levels of cerebellar inflammation influence heterokaryon formation. Our results together further demonstrate the Purkinje cell’s unique plasticity and regenerative potential. Elucidating the biological mechanisms behind these phenomena could have significant clinical implications for manipulating neuronal repair in response to neurological injury

    Mesenchymal Stem Cells Restore Frataxin Expression and Increase Hydrogen Peroxide Scavenging Enzymes in Friedreich Ataxia Fibroblasts

    Get PDF
    Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA)—a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin—have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs) induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients

    Conservative interventions for urinary or faecal incontinence, or both, in adults with multiple sclerosis

    Get PDF
    © 2018 The Cochrane Collaboration. This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the effects of conservative interventions for urinary or faecal incontinence (or both) in adults with multiple sclerosis, compared to no treatment, sham and usual care, any other active treatment, or another conservative treatment. To critically appraise and summarise the current evidence on resource use, costs and cost effectiveness of conservative interventions for adults with urinary or faecal incontinence (or both) and MS. We will make the following comparisons. Conservative treatment versus no treatment Conservative treatment versus sham treatment Conservative treatment versus usual care Conservative treatment versus pharmacological treatment Conservative treatment versus surgical treatment Conservative treatment versus any other conservative treatmen
    corecore