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Abstract 

Cerebellar dysfunction is a significant contributor to disability in multiple sclerosis (MS). Both 

white matter (WM) and grey matter (GM) injury occurs within MS cerebellum and, within GM, 

demyelination, inflammatory cell infiltration and neuronal injury contribute to on-going 

pathology. The precise nature of cerebellar GM injury is, however, unknown. Oxidative stress 

pathways with ultimate lipid peroxidation and cell membrane injury occur extensively in MS and 

the purpose of this study was to investigate these processes in MS cerebellar GM. Post-mortem 

human cerebellar GM from MS and control subjects was analysed immunohistochemically, 

followed by semi-quantitative analysis of markers of cellular injury, lipid peroxidation and anti-

oxidant enzyme expression. We have shown evidence for reduction in myelin and neuronal 

markers in MS GM, coupled to an increase in expression of a microglial marker.  We also show 

that the lipid peroxidation product 4-hydroxynonenal co-localises with myelin and its levels 

negatively correlate to myelin basic protein levels. Furthermore, superoxide dismutase (SOD1 

and 2) enzymes, localised within cerebellar neurons, are up-regulated, yet the activation of 

subsequent enzymes responsible for the detoxification of hydrogen peroxide, catalase and 

glutathione peroxidase are relatively deficient. These studies provide evidence for oxidative 

injury in MS cerebellar GM and further help define disease mechanisms within the MS brain.  
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1. Introduction 

The cerebellum is a major site for tissue injury in multiple sclerosis (MS), particularly in patients 

with progressive disease (Calabrese et al., 2010; Kutzelnigg et al., 2007; Redondo et al., 2014). 

Indeed, cerebellar dysfunction in MS is a significant contributor to disability, commonly 

progressing regardless of  treatment with disease-modifying agents (Waxman, 2005). Cerebellar 

dysfunction in MS is thought to arise due to a combination of white matter (WM) and grey 

matter (GM) injury, similar to that which occurs elsewhere in the cerebral cortex and underlying 

white matter tracts. The role of GM injury in MS has received less attention than WM injury, yet 

pathological studies of MS GM have revealed evidence for extensive demyelination, 

inflammation and neuronal loss (Kutzelnigg et al., 2005; Lucchinetti et al., 2011; Mahad et al., 

2008). Furthermore, cortical atrophy on MRI scans is a well-recognised feature of established 

progressive disease (Steenwijk et al., 2016). Understanding the causes of MS GM injury in the 

cerebellum may help design therapies to reduce injury in this part of the brain. 

 

A major role for reactive oxygen species (ROS) in the pathophysiology of MS and central 

nervous system (CNS) inflammatory disorders has been demonstrated (Cross et al., 1998; Smith 

et al., 1999; van Horssen et al., 2011). An imbalance in cellular redox homeostasis, leading to 

oxidative stress, may be caused by a large number of biological mechanisms resulting in the 

overproduction of ROS (Murphy, 2009). Changes leading to high concentrations of ROS have 

the potential to cause tissue damage and cell death within the CNS (Haider et al., 2011). 

Increases in ROS also trigger the formation of toxic molecules, such as lipid peroxidation 

products (Keller and Mattson, 1998), which themselves are strong reactive electrophiles capable 

of perpetuating oxidative stress (Abarikwu et al., 2012; Matveychuk et al., 2011). 

Experimentally, ROS and their reactive products cause cellular injury to neurons (and their 

axons) and oligodendrocytes (Abarikwu et al., 2012; French et al., 2009; Li et al., 2005; Wilkins 

and Compston, 2005).In both pathological studies and animal models of CNS inflammation, 

ROS play a key role in promoting tissue damage (Cross et al., 1998; Haider et al., 2011; Smith et 

al., 1999; van Horssen et al., 2008).  

 

There is a complex cellular interplay between oxidative injury and anti-oxidant defences, and 

cells possess a diverse array of mechanisms to reduce ROS that build up during normal 
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physiological processes. These include anti-oxidant enzymes such as superoxide dismutase 

(SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase. Failure of endogenous 

cell protection mechanisms that operate early in the disease course is postulated to be a major 

reason for on-going tissue damage in MS (van Horssen et al., 2011). Specifically, imbalances in 

the levels of oxidative stress molecules and anti-oxidant defences may be important in this 

respect, and precise identification of any imbalances may allow for the development of targeted 

therapeutic interventions which may help crucially tip the balance between cell death and 

survival. Indeed, a number of neurological conditions including amyotrophic lateral sclerosis, X-

linked adrenoleucodystrophy and adrenomyeloneuropathy all highlight the important balance 

between oxidative stress and anti-oxidant defences (Moser et al., 2007; Rosen, 1993).  

 

To date, studies have shown alterations in the levels of specific endogenous anti-oxidant 

enzymes and markers of oxidative stress in serum, cerebrospinal fluid (CSF) and brain tissue 

derived from patients with MS (Calabrese et al., 2002; Lund-Olesen, 2000; Tajouri et al., 2003; 

van Horssen et al., 2008). However, a clear understanding of precise mechanisms of tissue injury 

in MS is lacking, particularly in key pathological sites such as the cerebellum. In this study we 

have studied oxidative injury and the expression of anti-oxidant molecules in MS cerebellar grey 

matter.   
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2. Results 

 

2.1 Antibody specificity 

All primary antibodies used for immuno dot-blotting were tested for their specificity against their 

chosen antigens using western blotting techniques.  Under the experimental conditions used, all 

antibodies displayed specific bands as described on manufacturer data sheets and/or relative to 

their reported molecular weights and were therefore considered suitable for use in immuno dot-

blotting techniques (figures 2f, 3e, 5c). 

 

2.2 Characterisation of cerebellar grey matter 

Regions of demyelination (determined by myelin basic protein (MBP) staining) were seen in 

cerebellar grey matter (GM) tissue samples. Demyelination was typically seen exclusively within 

GM cerebellar above and below the layer of the Purkinje cells (supra- and infra-ganglionic layer) 

extending into the granular layer (cortical; figure 1a); or extending from white matter into the 

granular layer (leucocortical). As previously reported using the same patient cohort, all MS cases 

(and no control cases) showed areas of cortical and leucocortical demyelination within the grey 

matter. 29.4% (+/- 11.5 SEM) of the cerebellar cortex was demyelinated, representing 13.7% 

(+/- 8.5 SEM) with leucocortical demyelination and 15.7% (+/-7.2 SEM) with purely cortical 

demyelination (Redondo et al., 2014). Control sections immunolabelled for the 

macrophage/microglial marker human leucocyte antigen (HLA)-DP, DQ, DR, showed few 

positive cells in the cerebellum (figure 1b). In MS, HLA-DP, DQ, DR positive cells were 

scattered throughout cerebellar grey matter (GM) regions, where they had enlarged perikarya 

with thicker processes (figure 1c).  

 

2.3 Quantification of tissue injury in cerebellar grey matter 

Quantification of protein levels of HLA-DP, DQ, DR (determined by immunodot-blotting) 

revealed an increase (by approximately 2.5-fold) in MS cases compared to controls (Figure 2a). 

In addition immunodot-blotting of cerebellar GM tissue revealed a significant decrease in levels 

of MBP expression in keeping with immunohistochemical analysis of tissue (figure 2b). 

Quantification of neuronal markers: microtubule-associated protein 2 (MAP2), neurofilament 
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200 (NF200) and calbindin-D28k levels by immunodot-blot analysis revealed a global reduction 

in all the markers tested, in MS cerebellar GM when compared to control tissue (Figure 2c-e). 

 

2.4 Measurements of lipid peroxidation and oxidative stress  

Malondialdehyde (MAL) and 4-hydroxynonenal (4-HNE) are major end-products of oxidation of 

polyunsaturated fatty acids, and are generally accepted as indicators of lipid peroxidation and 

oxidative stress (Requena et al., 1997). MAL and 4-HNE expression in the cerebellum of both 

control and MS patients was also investigated using immuno dot-blot analysis and 

immunohistochemistry.  4-HNE levels were significantly increased in the MS cerebellum grey 

matter when compared to control tissue (figure 3a). However, there were no significant changes 

evident in MAL levels between groups (Figure 3b).  

 

Analysis of the relationship between 4-HNE with the corresponding anti-oxidant enzyme, 

neuronal or myelin expression in MS GM, revealed a significant negative correlation between 

the expression of 4-hydroxynonenal and MBP (p<0.05; figure 3c). We found no correlation 

between the levels of MAL and MBP (figure 3d).  

 

Areas of cerebellar tissue were subsequently immunolabelled using antibodies against 4-HNE 

and MAL in the sections derived from MS and control patients. In control sections, little or no 

positivity was demonstrable in the cerebellum (figure 4e-h). In MS cases, 4-HNE was abundant 

in the grey matter, particularly in the granular layer where it was co-localised with MBP 

labelling (figure 4a-d). In comparison, MAL showed less reactivity within the grey matter 

although did show occasional expression within neurons, such as Purkinje cells (data not shown).   

 

2.5 Anti-oxidant enzyme gene and protein expression in cerebellar grey matter derived from 

MS and control patients 

In order to determine anti-oxidant responses to the increased lipid peroxidation product 4-HNE, 

an analysis of anti-oxidant enzyme expression at the genomic and proteomic level using real-

time polymerase chain reaction (RT-PCR) and immuno dot-blotting techniques respectively was 

performed in cerebellar GM in MS cases and controls.  Both SOD1 and SOD2 mRNA and 

protein levels differed significantly between control and MS brain tissue, with a minimal 1.5 fold 
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increase in SOD expression in the MS brain (figures 5a,b). However, there were no significant 

changes evident in either catalase or GPX mRNA or protein levels between patient groups.   

 

To investigate the cellular localisation of both SOD1 and SOD2 within the cerebellum grey 

matter, MS tissue was double immunolabelled using antibodies to either SOD1 or SOD2 in 

conjunction with HLA-DP, DQ, DR (figure 5d-k). In MS sections, neuronal localisation of both 

SOD1 and SOD2 expression was evident (particulary in the Purkinje cells which were identified 

on the basis of their characteristic morphology), showing typical neuronal cytoplasmic and 

mitochondrial labelling respectively, which in turn was relatively absent in the cells labelled with 

the macrophage/microglial marker HLA-DP, DQ, DR. 
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3. Discussion 

We have performed a series of experiments using human cerebellar GM tissue investigating 

tissue injury, lipid peroxidation and anti-oxidant enzyme expression. In MS the GM was 

characterised by microglial infiltration, cortical and leucortical demyelination, and a reduction in 

expression of neuronal markers. In addition, we show elevation of the lipid peroxidation product 

4-HNE, which co-localises and negatively correlates with MBP expression in the granular layer 

of the cerebellum, suggesting 4-HNE may be relevant to GM demyelination in the cerebellum. 

Using quantitative PCR and immunodot-blotting assays, we have shown that anti-oxidant 

enzyme expression in the cerebellum is altered in MS at both the mRNA and protein level. We 

show here that superoxide dismuting enzymes (SOD1 and SOD2), localised within cerebellar 

neurons, are up-regulated in MS, but the activation of subsequent enzymes responsible for the 

detoxification of hydrogen peroxide, both catalase and GPX, are relatively deficient.  

 

Several studies have highlighted the extent of tissue injury in MS cerebellum. In a similar way to 

the cerebral cortex, the cerebellar cortex appears a major site for demyelination in MS with one 

study reporting 38.7% of the cerebellar cortex being affected in a cohort of PPMS and SPMS 

patients (Kutzelnigg et al., 2007). It is thought that mechanisms of demyelination in the GM are 

similar to WM, although there may be particular topographical influences on GM demyelination. 

For instance, microglial infiltration into GM in commonly seen, but recent observations have 

suggested an association between meningeal inflammation and pathology in the adjacent cerebral 

cortex (Calabrese et al., 2015; Howell et al., 2014). The precise mechanism of GM 

demyelination needs further elucidation. In addition to myelin loss, other studies have previously 

reported neuronal changes within MS cerebellum.  Purkinje cell densities in lesional cerebellar 

GM (compared to control) are reduced, but no significant reductions in Purkinje cell densities 

were seen in non-lesional GM (Kutzelnigg et al., 2007; Redondo et al., 2014). Changes in 

Purkinje cell morphology and neurofilament phosphorylation states are also to demyelination 

(Redondo et al., 2014). Our demonstration of global reductions in the expression of neuronal 

markers is in keeping with previous demonstration of neurodegenerative processes in MS. 

 

Oxygen radical-induced cytotoxicity is associated with lipid peroxidation. By reacting with 

polyunsaturated fatty acids in the various cellular membranes, oxyradicals such as hydroxyl 
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(OH.) and peroxynitrite (ONOO) give rise to a variety of lipid peroxidation products, including 

4-hydroxynonenal  and malondialdehyde, which are frequently measured as indicators of 

oxidative stress in vivo (Keller and Mattson, 1998; Requena et al., 1997). These reactive 

aldehydes are themselves cytotoxic; being strong reactive electrophiles and, amongst a plethora 

of toxic properties, they have the capability to inhibit DNA, RNA, and protein synthesis and may 

disrupt protein and membrane structures (reviewed by Matveychuck et al (Matveychuk et al., 

2011)). They also have the capability to perpetuate oxidative stress by elevating mitochondrial 

ROS and inhibiting the antioxidant defence system through decreasing catalase, glutathione and 

SOD levels (Abarikwu et al., 2012; Long et al., 2009).  

 

A major role for ROS in the pathophysiology of MS and central nervous system inflammatory 

disorders has been demonstrated in both pathological and experimental studies (Cross et al., 

1998; Smith et al., 1999). Specifically, ROS may not only induce tissue injury and cellular death, 

but may also interfere with normal cellular functioning in the central nervous system. For 

instance, oxidative molecules, notably hydrogen peroxide, may disrupt oligodendrocyte 

maturation which may have consequences for endogenous repair mechanisms in MS (French et 

al., 2009). The enzymes responsible for the generation of ROS have been detected in tissue 

derived from patients with MS and experimental models of CNS inflammation. NADPH oxidase 

is responsible for the generation of superoxide ions and is highly expressed in activated 

microglia and infiltrating macrophages within MS lesions (Fischer et al., 2012). In addition, 

expression of iNOS, which is responsible for the generation of nitric oxide, is up-regulated in 

microglia and macrophages in acute and chronic lesions and has been linked to acute axonal 

injury (Bagasra et al., 1995; Diaz-Sanchez et al., 2006; Hill et al., 2004; Liu et al., 2001).  

 

Profound oxidative damage to myelin, oligodendrocytes and neurons has also been demonstrated 

in MS lesions (Haider et al., 2011). ROS activation may also be a key event in the disruption of 

the blood-brain barrier, an important event in MS disease initiation (Schreibelt et al., 2006; Van 

der Goes et al., 2001). It is known that a number of oxidation products, including 4-HNE and 

oxidised phospholipids, are abundantly present in active MS lesions (Haider et al., 2011; van 

Horssen et al., 2008). Haider et al. demonstrated the presence of oxidative damage in MS lesions 

describing oxidized DNA (8-hydroxy-D-guanosine) and lipid peroxidation-derived structures 
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(malondialdehyde and oxidised phospholipid epitopes) (Haider et al., 2011). We have shown that 

4-HNE levels are elevated in MS cerebellar GM. Within the MS cerebellum higher levels of 4-

HNE expression are associated with reduced MBP expression, and that 4-HNE appears to be co-

localised with myelin predominantly in the granular cell layer, suggesting that 4-HNE production 

within the GM may be associated with myelin loss.  

 

The interactions between ROS and anti-oxidant enzymes within MS tissue are complex.  

Previous studies have shown changes in levels of certain endogenous anti-oxidant enzymes in 

MS tissue. For instance, increases in SOD1 gene transcription and protein expression have been 

detected in acute demyelinating MS lesions (Tajouri et al., 2003; van Horssen et al., 2008). 

These studies also showed evidence for changes in catalase expression by macrophages and 

some increases in GPX gene transcription (Tajouri et al., 2003; van Horssen et al., 2008). Whole 

genome arrays have also suggested that GPX isoenzyme transcripts may be differentially 

expressed in MS lesions (Fischer et al., 2012). Studies concerned with the determination of anti-

oxidant enzymes in CSF of MS patients have also been limited. One small study has suggested 

SOD levels may be low in CSF derived from patients with MS (Lund-Olesen, 2000). Catalase 

activity has been found to be elevated (Calabrese et al., 2002) and conversely GPX has also been 

shown to be markedly decreased (Calabrese et al., 1994) in CSF samples from patients with MS 

compared to control.  

 

This current study has shown increases in mRNA and protein expression of superoxide 

dismuting enzymes (SOD1 and 2) with no increase in hydrogen peroxide reducing enzymes 

(catalase and GPX). SOD1 and SOD2 are immunocytochemically localised to cerebellar 

neurons, and not infiltrating macrophage/microglial cells. Imbalances in the cellular redox 

homeostasis (increased ROS production alongside a lack in hydrogen peroxide detoxifying 

enzyme activity) may lead to an excess of hydrogen peroxide and the subsequent formation of 4-

HNE and/or malondialdehyde as evident in this study. In support of this theory, in vitro studies 

have directly correlated decreased glutathione levels and GPX activity with increased lipid 

peroxidation and protein carbonylation (Bizzozero et al., 2006; Bizzozero et al., 2007). Our 

findings may therefore suggest that in MS the lack in activity of hydrogen peroxide detoxifying 
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enzymes during the inflammatory insult may conceivably play a pathogenic role in the 

accumulation of lipid peroxidation, oxidative stress and myelin injury in MS GM.  

 

Taken together our observations provide evidence for tissue injury, lipid peroxidation and 

alterations in the production of protective anti-oxidant enzymes in MS GM. Generation of the 

lipid peroxidation product 4-HNE may be linked to myelin injury. Furthermore, imbalances in 

anti-oxidant enzyme expression in MS GM may be linked to abnormalities of ROS 

detoxification with subsequent build-up of toxic molecules causing cellular stress and 

irreversible tissue damage in patients with MS. Our data provide insights into oxidative and anti-

oxidative processes occurring within the cerebellum in MS. This study suggests that directed and 

specific therapeutic strategies to reduce oxidative damage may play a crucial role in reducing 

tissue injury in MS.   
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4. Experimental procedure 

 

4.1 Patients 

Post-mortem cerebellum samples from eight patients with MS and six control patients were 

obtained through collaboration with the UK Multiple Sclerosis Tissue Bank at the Imperial 

College, London, UK. For the majority of MS cases, there were multiple tissue blocks for each 

patient, a total of twenty five frozen and six formalin-fixed paraffin embedded tissue blocks were 

therefore used in this study.  All patients had been clinically diagnosed as having MS and this 

diagnosis had been confirmed during neuropathological autopsy examination. Control 

cerebellum samples were derived from patients who had died from causes other than 

neurological disease (Table 1). All tissues were collected with the donors' fully informed consent 

via a prospective donor scheme. At death, brains were removed; and either ‘snap frozen’ or fixed 

in neutral buffered formalin and tissue blocks embedded in paraffin. Case histories for all eight 

MS patients were reviewed (although some were incomplete). Six out of eight were documented 

to have moderate to severe ataxia.  

 

4.2 Immunohistochemistry on paraffin sections 

Cerebellar sections 10 µm in thickness were immunostained with antibodies to MBP 

(1:3200)(Serotec, Oxford, UK) and HLA-DP DQ DR (1:800)(Dako, Cambridgeshire, UK). 

Sections were deparaffinised in Clearene, dehydrated in 100% ethanol, hydrated in distilled 

water, and immersed in 3% hydrogen peroxide in methanol for 30 minutes to block endogenous 

peroxidase activity, rinsed and microwaved in sodium citrate buffer (0.01 M, pH 6.0, 5 minutes) 

or EDTA buffer (1 mM, pH 8, 10 minutes) as appropriate and rinsed in phosphate-buffered 

saline (PBS). Non-specific binding was blocked with Vectastain blocking serum (20 minutes). 

After addition of the primary antibody, sections were incubated overnight at 4°C. The sections 

were then rinsed in PBS before incubation for 20 minutes with secondary antibody (Vectastain 

Biotinylated Universal antibody) and 20 minutes with VectaElite ABC Complex (PK-6200, 

Vector Laboratories, Peterborough, UK) followed by a 10-minute incubation with 3,3′-

diaminobenzidine (DAB) and 0.01% H2O2. Sections were washed in water, immersed in copper 

sulphate DAB enhancer (4 minutes), counterstained with hematoxylin, dehydrated, cleared and 

mounted. Cerebellar slices (for 6 of the MS cases) were stained with MBP and measurements of 
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the regions of demyelination in each section obtained using Image J software to obtain the 

percentage of demyelination per standardized unit length. Further analysis of the tissue was 

performed using immuno-blotting techniques described below. 

 

4.3 Immunofluorescence labelling on paraffin sections 

Sections (10µm) were deparaffinised, hydrated and washed as above. To reduce auto-

fluorescence, sections were incubated in 5 mM copper sulphate and 50 mM ammonium acetate 

for 1 h at room temperature prior to microwaving in sodium citrate buffer (0.01 M, pH 6.0, 5 

minutes). Cells were labelled by double immunofluorescence using antibodies to 4-

Hydroxynonenal (1:500)(Abcam, UK), Malondialdehyde (1:250)(Abcam, UK), MBP 

(1:100)(Serotec, Oxford, UK), HLA-DP DQ DR (1:250)(Dako, Cambridgeshire, UK), SOD1 

(1:250)(Abcam, UK) and SOD2(1:250)(Abcam, UK). Non-specific binding was blocked with 

10% normal goat serum diluted in PBS containing 0.1% triton. Sections were incubated at 4°C 

overnight with primary antibodies. Sections were then washed in PBS and incubated for 30 

minutes in the dark with Alexa Fluor 488, goat anti-mouse or Alexa Fluor 555 (1:500), goat anti-

rabbit (1:500)(Invitrogen, Paisley, UK), before being washed in PBS and mounted in Vectashield 

medium containing the nuclear dye 4′6′-diamidino-2-phenylindole (DAPI) (H-1200, Vector 

Laboratories).  

  

4.4 Real-time Polymerase Chain Reaction (PCR) 

Frozen tissue blocks were thawed on ice and grey matter carefully dissected away from white 

matter layers. RNA isolation, cDNA synthesis and RT-PCR were carried out as previously 

described by methods used within our laboratory (Gray et al., 2014; Hares et al., 2013).  RT-PCR 

was performed using the StepOnePlus Real-Time PCR System (Applied Biosystems, Paisley, 

UK) with Assay-on-demand Gene Expression Products for SOD1, SOD2, catalase, GPX and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Taqman MGB probe, FAM dye-labelled, 

Applied Biosystems, Paisley, UK). The relative gene expression (RQ value) of a specific gene 

was calculated using the 2-ΔΔCt method, and the mean taken for each group. Values were 

expressed relative to the housekeeping gene GADPH in order to give an indication of the relative 

expression of genes throughout the whole tissue. 
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4.5 Immuno blotting  

3.5.1 Sample preparation 

Frozen tissue blocks were thawed on ice and grey matter carefully dissected away from white 

matter layers. The grey matter was then homogenized on ice by use of the PARIS kit (Ambion, 

UK) and a protease and phosphatase inhibitor cocktail (Thermo Scientific, UK) added at a 

dilution 1:100. The supernatants were removed and stored at −80°C until required.  

 

4.5.2 Antibodies 

Antibodies used were mouse anti-GAPDH (1:5000), rabbit anti-SOD1 (1:4000),  mouse anti-

SOD2 (1:4000), rabbit anti-catalase (1:10000),  rabbit anti-GPX-1 (1:5000), rabbit anti-

malondialdehyde (1:6000) and mouse anti-4 hydroxynonenal  (1:300)(all from Abcam, UK); 

mouse anti-HLA-DP DQ DR (1:1000) (Dako, Cambridgeshire, UK); rat anti- MBP (1:2000) 

(Serotec, Oxford, UK); rabbit anti-calbindin D28k (1:2000),  mouse anti-MAP2 (1:5000) and 

mouse anti-NF200 (1:10000)(all from Sigma-Aldrich, UK);  

 

4.5.3 Western blotting and Immuno dot-blotting 

Both western blotting and immune dot-blotting were carried out as previously described (Gray et 

al., 2014; Hares et al., 2013). Densitometic analysis of protein dots was performed using ImageJ 

software (NIH, USA). Values were expressed relative to the loading control protein GADPH in 

order to give an indication of the relative expression of proteins throughout the whole tissue. 

 

4.6 Statistical analysis 

Statistical analysis was performed using a regression model using STATA v12. Where the 

distribution of the original variable differed significantly from normal, the regression model was 

fitted on the square root or log transformation of the response. The model also allowed for any 

correlation among multiple sections coming from the same brain tissue (cluster option). Non-

parametric bootstrap was used to estimate standard errors and confidence intervals to account for 

possible non-normality of the parameter's distribution. Linear regression, Spearman’s or 

Pearson’s correlation methods were also used to analyse relationships between two variables.  

The analysis was performed using STATA v12 (Timberlake Consultants, London, UK) and 
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GraphPad Prism (GraphPad Software Inc, USA). For all tests, values of p<0.05 were considered 

statistically significant. 
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Tables 

Table 1 The characteristics of both MS and control patients used for this study 

 

Figure legends 

Figure 1 Demyelination and microglial infiltration in MS and control cerebellar grey matter. (a) 

MS section showing DAB (brown) labelling of myelin basic protein (MBP) demonstrating 

demyelination within the granular layer of MS cerebellum. The hatched areas in (i) represent the 

higher magnified images (ii/iii); (b) Control and (c) MS sections DAB (brown) immunolabelled 

with HLA-DP, DQ, DR showing an influx of microglial cells spread throughout the cerebellar 

grey matter in MS brain. (Scale bar = 100µm).  

 

 

 

 



17 
 

Figure 2 Quantification of cellular injury in control and MS cerebellar grey matter. The relative 

(a)  HLA-DP, DQ, DR, (b) MBP, (c) Calbindin,  (d) MAP2, and (e) NF200 protein expression in 

control and MS cerebellar GM samples determined by immuno dot-blot analysis when 

normalised to the protein expression of GAPDH (**p<0.01, ***p<0.001, comparing MS to 

control). (f) Western blot images depicting the specificity of the primary antibodies used for 

immunodot-blotting techniques against their chosen antigens.  
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Figure 3 Indicators of lipid peroxidation and oxidative stress are increased in MS cerebellar grey 

matter. The relative (a) 4-hydroxynonenal and  (b) malondialdehyde expression in control and 

MS cerebellar grey matter samples when normalised to the protein expression of GAPDH . 

Results are expressed as the mean +/- (SEM). (*p<0.05, ns (not significant), comparing MS to 

control).  The correlation and linear regression analysis of:- 4-HNE levels with MBP (c) and 

MAL levels with MBP (d). All markers are normalised to GAPDH (for correlative analysis 

protein levels are expressed realtive to the mean of the controls)(*p<0.05, ns (not significant); r = 

correlation coefficient). (e) Western blot images depicting the specificity of the primary 

antibodies used for immunodot-blotting techniques against their chosen antigens.   
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Figure 4 4-hydroxynonenal expression within MS cerebellar grey matter. Representative human 

cerebellar sections derived from an MS (a-d) and control (e-h) patient showing 4-

hydroxynonenal is abundant throughout within the MS cerebellum (c) and co-localises with 

MBP (b). Sections are fluorescently labelled with DAPI nuclear stain (blue; a,e), MBP (red; b,f),  

4-hydroxynonenal (green; c,g); (d,h) Merged figures. (Scale bar = 50µm).  
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Figure 5 Anti-oxidant enzyme mRNA and protein expression levels in both control and MS 

cerebellar grey matter. The relative SOD1, SOD2, GPX and catalase (a) mRNA and (b) protein 

expression in control and MS cerebellar grey matter samples, determined by RT-PCR and 

immuno dot-blot respectively, when normalised to the house keeping gene GAPDH.  Results are 

expressed as the mean +/- (SEM). (*p<0.05, **p<0.01, ***p<0.001, ns (not significant), 

comparing MS to control). (c) Western blot images depicting the specificity of the primary 

antibodies used for immuno dot-blotting techniques against their chosen antigens.  (d-k) 

Representative human cerebellar sections derived from MS patients showing neuronal 

localisation of both SOD1 (green; d-g) and SOD2 (green; h-k), which is relatively absent in 

HLA-DP, DQ, DR (red) positive cells. The hatched area in (d) represents the higher magnified 

images (e, f, g). The hatched area in (h) represents the higher magnified images (i, j, k).  (Scale 

bar = 50µm). 
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