1,514 research outputs found

    Exact vortex nucleation and cooperative vortex tunneling in dilute BECs

    Full text link
    With the imminent advent of mesoscopic rotating BECs in the lowest Landau level (LLL) regime, we explore LLL vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean field features are exposed at filling factors >>1 . Eg near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantising a mean field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number and ellipticity.Comment: 4 pages,4 figure

    Energy cost associated with vortex crossing in superconductors

    Full text link
    Starting from the Ginzburg-Landau free energy of a type II superconductor in a magnetic field we estimate the energy associated with two vortices crossing. The calculations are performed by assuming that we are in a part of the phase diagram where the lowest Landau level approximation is valid. We consider only two vortices but with two markedly different sets of boundary conditions: on a sphere and on a plane with quasi-periodic boundary conditions. We find that the answers are very similar suggesting that the energy is localised to the crossing point. The crossing energy is found to be field and temperature dependent -- with a value at the experimentally measured melting line of U×7.5kTm1.16/cL2U_\times \simeq 7.5 k T_m \simeq 1.16/c_L^2, where cLc_L is the Lindemann melting criterion parameter. The crossing energy is then used with an extension of the Marchetti, Nelson and Cates hydrodynamic theory to suggest an explanation of the recent transport experiments of Safar {{\em et al.}\ }.Comment: 15 pages, RevTex v3.0, followed by 5 postscript figure

    Anomalous hydrodynamics and "normal" fluids in rapidly rotating BECs

    Full text link
    In rapidly rotating bose systems we show that there is a region of anomalous hydrodynamics whilst the system is still condensed, which coincides with the mean field quantum Hall regime. An immediate consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show there are kinematic constraints which connect spatial variations of density and phase, that the positions of vortices are not the simplest description of the dynamics of such a fluid (despite their utility in describing the instantaneous state of the condensate) and that the most compact description allows solution of some illuminating examples of motion. We demonstrate, inter alia, a very simple relation between vortices and surface waves. We show the surface waves can form a "normal fluid" which absorbs energy and angular momentum from vortex motion in the trap. The time scale of this process is sensitive to the initial configuration of the vortices, which can lead to long-lived vortex patches - perhaps related to those observed at JILA.Comment: 4 pages; 1 sentence and references modifie

    Implementation and modeling of a femtosecond laser-activated streak camera

    Get PDF
    8 June 2017) A laser-activated streak camera was built to measure the duration of femtosecond electron pulses. The streak velocity of the device is 1.89 mrad/ps, which corresponds to a sensitivity of 34.9 fs/pixels. The streak camera also measures changes in the relative time of arrival between the laser and electron pulses with a resolution of 70 fs RMS. A full circuit analysis of the structure is presented to describe the streaking field and the general behavior of the device. We have developed a general mathematical model to analyze the streaked images. The model provides an accurate method to extract the pulse duration based on the changes of the electron beam profile when the streaking field is applied

    Plastic energies in layered superconductors

    Full text link
    We estimate the energy cost associated with two pancake vortices colliding in a layered superconductor. It is argued that this energy sets the plastics energy scale and is the analogue of the crossing energy for vortices in the continuum case. The starting point of the calculation is the Lawrence-Doniach version of the Ginzburg-Landau free energy for type-II superconductors. The magnetic fields considered are along the c-direction and assumed to be sufficiently high that the lowest Landau level approximation is valid. For Bi-2212, where it is know that layering is very important, the results are radically different from what would have been obtained using a three-dimensional anisotropic continuum model. We then use the plastic energy for Bi-2212 to successfully explain recent results from Hellerqvist {\em et al.}\ on its longitudinal resistance.Comment: 5 Pages Revtex, 4 uuencoded postscript figure

    Condensation of `composite bosons' in a rotating BEC

    Full text link
    We provide evidence for several novel phases in the dilute limit of rotating BECs. By exact calculation of wavefunctions and energies for small numbers of particles, we show that the states near integer angular momentum per particle are best considered condensates of composite entities, involving vortices and atoms. We are led to this result by explicit comparison with a description purely in terms of vortices. Several parallels with the fractional quantum Hall effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure

    Weakly Interacting Bose-Einstein Condensates Under Rotation: Mean-field versus Exact Solutions

    Full text link
    We consider a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation and investigate the connection between the energies obtained from mean-field calculations and from exact diagonalizations in a subspace of degenerate states. From the latter we derive an approximation scheme valid in the thermodynamic limit of many particles. Mean-field results are shown to emerge as the correct leading-order approximation to exact calculations in the same subspace.Comment: 4 pages, RevTex, submitted to PR

    Eta-Helium Quasi-Bound States

    Full text link
    The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.Comment: LaTeX, uses elsart.sty, 10 pages, 3 Postscript figures, Submitted to Physics Letters

    Near-Threshold Production of omega Mesons in the pp -> pp omega Reaction

    Full text link
    The total cross section for omega production in the pp -> pp omega reaction has been measured at five c.m. excess energies from 3.8 to 30 MeV. The energy dependence is easily understood in terms of a strong proton-proton final state interaction combined with a smearing over the width of the state. The ratio of near-threshold phi and omega production is consistent with the predictions of a one-pion-exchange model and the degree of violation of the OZI rule is similar to that found in the pi-p -> n omega/phi reactions.Comment: Report in LaTeX2e. 12 pages with 2 eps figure
    corecore