2,599 research outputs found

    An Empirical Ultraviolet Iron Spectrum Template Applicable to Active Galaxies

    Get PDF
    Iron emission is often a severe contaminant in optical-ultraviolet spectra of active galaxies. Its presence complicates emission line studies. A viable solution, already successfully applied at optical wavelengths, is to use an empirical iron emission template. We have generated FeII and FeIII templates for ultraviolet active galaxy spectra based on HST archival 1100 - 3100 A spectra of IZw1. Their application allows fitting and subtraction of the iron emission in active galaxy spectra. This work has shown that in particular CIII] lambda 1909 can be heavily contaminated by other line emission, including iron transitions. Details of the data processing, generation, and use of the templates, are given by Vestergaard & Wilkes (2001).Comment: 4 pages, including 1 figure, to appear in "Spectroscopic Challenges of Photoionized Plasmas", ASP Conf. Series, Eds. Gary Ferland and Daniel Wolf Savi

    The Cambridge-Cambridge ROSAT Serendipity Survey - I. X-ray-luminous galaxies

    Full text link
    We report on the first results obtained from a new optical identification programme of 123 faint X-ray sources with SS(0.5--2keV)>2×1014\,{\rm keV)}>2\times 10^{-14}\,erg\,s1^{-1}\,cm2^{-2}\, serendipitously detected in {\it ROSAT} PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSOs, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (1042<LX<1043.510^{42} < L_{\rm X} < 10^{43.5}\,erg\,s1^{-1}). Subsequent spectroscopy reveals them to be a mixture of starburst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the {\it Einstein} Extended Medium Sensitivity Survey, these X-ray-luminous galaxies exhibit a rate of cosmological evolution, LX(1+z)2.5±1.0L_{\rm X} \propto (1+z)^{2.5\pm1.0}, consistent with that derived for X-ray QSOs. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Φ(LX)LX1.9\Phi(L_{\rm X}) \propto L_{\rm X}^{-1.9}), implies that such objects could comprise 15--35 per cent of the soft (1--2\,keV)Comment: Accepted for publication in MNRAS. 7 pages including 5 figures; uuencoded compressed postscript; RGO-21

    The Velocity Field of Quasar Broad Emission Line Gas

    Get PDF
    In this Letter, the broad emission line (BEL) profiles of superluminal quasars with apparent jet velocities, βa>10\beta_{a}>10, (ultraluminal QSOs, or ULQSOs hereafter) are studied as a diagnostic of the velocity field of the BEL emitting gas in quasars. The ULQSOs are useful because they satisfy a very strict kinematical constraint, their parsec scale jets must be propagating within 1212^{\circ} of the line of sight. We know the orientation of these objects with great certainty. The large BEL FWHM, 3,000km/s6,000km/s\sim 3,000 \mathrm{km/s} - 6,000 \mathrm{km/s}, in ULQSOs tend to indicate that the BEL gas has a larger component of axial velocity (either random or in a wind) along the jet direction than previously thought.Comment: To appear in ApJ Letter

    Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships

    Get PDF
    We present four improved empirical relationships useful for estimating the central black hole mass in nearby AGNs and distant luminous quasars alike using either optical or UV single-epoch spectroscopy. These mass-scaling relationships between line widths and luminosity are based on recently improved empirical relationships between the broad-line region size and luminosities in various energy bands and are calibrated to the improved mass measurements of nearby AGNs based on emission-line reverberation mapping. The mass-scaling relationship based on the Hbeta line luminosity allows mass estimates for low-redshift sources with strong contamination of the optical continuum luminosity by stellar or non-thermal emission, while that based on the C IV lambda 1549 line dispersion allows mass estimates in cases where only the line dispersion (as opposed to the FWHM) can be reliably determined. We estimate that the absolute uncertainties in masses given by these mass-scaling relationships are typically around a factor of 4. We include in an Appendix mass estimates for all the Bright Quasar Survey (PG) quasars for which direct reverberation-based mass measurements are not available.Comment: 48 pages including 12 figures and 7 tables. Accepted by Ap

    Quasar x-ray spectra revisited

    Get PDF
    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects

    Blob ejection from advection-dominated accretion flow: observational consequences

    Get PDF
    There is increasing evidence for the presence of an optically thin advection-dominated accretion flow (ADAF) in low luminosity active galactic nuclei and radio-loud quasars. The present paper is devoted to explore the fate of a blob ejected from an ADAF, and to discuss its observational consequences. It is inevitable for the ejected blob to drastically expand into its surroundings. Consequently, it is expected that a group of relativistic electrons should be accelerated, which may lead to nonthermal flares, since a strong shock will be formed by the interaction between the blob and its surroundings. Then the blob cools down efficiently, leading to the appearance of recombination lines about 10510^5s after its ejection from an ADAF. We apply this model to NGC 4258 for some observational prediction, and to PKS 2149--306 for the explanation of observational evidence. Future simultaneous observations of recombination X-ray lines and continuum emission are highly desired to test the present model.Comment: 4 pages in emulateapj.sty, no figure. Accepted by ApJ Letter
    corecore