191 research outputs found

    Structural evolution drives diversification of the large LRR-RLK gene family

    Get PDF
    Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) are signal receptors critical in development and defense. LRR‐RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well‐resolved LRR‐RLK gene tree has remained elusive. To resolve the LRR‐RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR‐RLK subclades and reconstructed the deepest nodes of the full gene family. We discovered that the LRR‐RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR‐RLK variants as members of other gene families. Our work corrects this misclassification. Our results reveal ongoing structural evolution generating novel LRR‐RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family

    Does Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?

    Get PDF
    Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Probing Evolutionary Repeatability: Neutral and Double Changes and the Predictability of Evolutionary Adaptation

    Get PDF
    The question of how organisms adapt is among the most fundamental in evolutionary biology. Two recent studies investigated the evolution of Escherichia coli in response to challenge with the antibiotic cefotaxime. Studying five mutations in the beta-lactamase gene that together confer significant antibiotic resistance, the authors showed a complex fitness landscape that greatly constrained the identity and order of intermediates leading from the initial wildtype genotype to the final resistant genotype. Out of 18 billion possible orders of single mutations leading from non-resistant to fully-resistant form, they found that only 27 (1.5x10(-7)%) pathways were characterized by consistently increasing resistance, thus only a tiny fraction of possible paths are accessible by positive selection. I further explore these data in several ways.Allowing neutral changes (those that do not affect resistance) increases the number of accessible pathways considerably, from 27 to 629. Allowing multiple simultaneous mutations also greatly increases the number of accessible pathways. Allowing a single case of double mutation to occur along a pathway increases the number of pathways from 27 to 259, and allowing arbitrarily many pairs of simultaneous changes increases the number of possible pathways by more than 100 fold, to 4800. I introduce the metric 'repeatability,' the probability that two random trials will proceed via the exact same pathway. In general, I find that while the total number of accessible pathways is dramatically affected by allowing neutral or double mutations, the overall evolutionary repeatability is generally much less affected.These results probe the conceivable pathways available to evolution. Even when many of the assumptions of the analysis of Weinreich et al. (2006) are relaxed, I find that evolution to more highly cefotaxime resistant beta-lactamase proteins is still highly repeatable

    Guided evolution of in silico microbial populations in complex environments accelerates evolutionary rates through a step-wise adaptation

    Get PDF
    Abstract Background During their lifetime, microbes are exposed to environmental variations, each with its distinct spatio-temporal dynamics. Microbial communities display a remarkable degree of phenotypic plasticity, and highly-fit individuals emerge quite rapidly during microbial adaptation to novel environments. However, there exists a high variability when it comes to adaptation potential, and while adaptation occurs rapidly in certain environmental transitions, in others organisms struggle to adapt. Here, we investigate the hypothesis that the rate of evolution can both increase or decrease, depending on the similarity and complexity of the intermediate and final environments. Elucidating such dependencies paves the way towards controlling the rate and direction of evolution, which is of interest to industrial and medical applications. Results Our results show that the rate of evolution can be accelerated by evolving cell populations in sequential combinations of environments that are increasingly more complex. To quantify environmental complexity, we evaluate various information-theoretic metrics, and we provide evidence that multivariate mutual information between environmental signals in a given environment correlates well with the rate of evolution in that environment, as measured in our simulations. We find that strong positive and negative correlations between the intermediate and final environments lead to the increase of evolutionary rates, when the environmental complexity increases. Horizontal Gene Transfer is shown to further augment this acceleration, under certain conditions. Interestingly, our simulations show that weak environmental correlations lead to deceleration of evolution, regardless of environmental complexity. Further analysis of network evolution provides a mechanistic explanation of this phenomenon, as exposing cells to intermediate environments can trap the population to local neighborhoods of sub-optimal fitness

    Critical mutation rate has an exponential dependence on population size for eukaryotic-length genomes with crossover

    Get PDF
    The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction

    The relationship between the error catastrophe, survival of the flattest, and natural selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quasispecies model is a general model of evolution that is generally applicable to replication up to high mutation rates. It predicts that at a sufficiently high mutation rate, quasispecies with higher mutational robustness can displace quasispecies with higher replicative capacity, a phenomenon called "survival of the flattest". In some fitness landscapes it also predicts the existence of a maximum mutation rate, called the error threshold, beyond which the quasispecies enters into error catastrophe, losing its genetic information. The aim of this paper is to study the relationship between survival of the flattest and the transition to error catastrophe, as well as the connection between these concepts and natural selection.</p> <p>Results</p> <p>By means of a very simplified model, we show that the transition to an error catastrophe corresponds to a value of zero for the selective coefficient of the mutant phenotype with respect to the master phenotype, indicating that transition to the error catastrophe is in this case similar to the selection of a more robust species. This correspondence has been confirmed by considering a single-peak landscape in which sequences are grouped with respect to their Hamming distant from the master sequence. When the robustness of a classe is changed by modification of its quality factor, the distribution of the population changes in accordance with the new value of the robustness, although an error catastrophe can be detected at the same values as in the general case. When two quasispecies of different robustness competes with one another, the entry of one of them into error catastrophe causes displacement of the other, because of the greater robustness of the former. Previous works are explicitly reinterpreted in the light of the results obtained in this paper.</p> <p>Conclusions</p> <p>The main conclusion of this paper is that the entry into error catastrophe is a specific case of survival of the flattest acting on phenotypes that differ in the trade-off between replicative ability and mutational robustness. In fact, entry into error catastrophe occurs when the mutant phenotype acquires a selective advantage over the master phenotype. As both entry into error catastrophe and survival of the flattest are caused by natural selection when mutation rate is increased, we propose differentiating between them by the level of selection at which natural selection acts. So we propose to consider the transition to error catastrophe as a phenomenon of intra-quasispecies selection, and survival of the flattest as a phenomenon of inter-quasispecies selection.</p

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    The Ascent of the Abundant: How Mutational Networks Constrain Evolution

    Get PDF
    Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit

    Bringing Molecules Back into Molecular Evolution

    Get PDF
    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events
    • …
    corecore