362 research outputs found

    Atrazine and the Hypothalamo-Pituitary-Gonadal Axis in Sexually Maturing Precocial Birds

    Get PDF
    The herbicide atrazine is a putative endocrine disruptor. The present studies investigated the effects of atrazine in male Japanese quail during sexual maturation. Atrazine was administered for 2 weeks in the diet or systemically to birds under long photoperiods. Atrazine had no effect on mortality but depressed both feed intake and growth (average daily gain [ADG] in g/day) at dietary concentrations of 1000 ppm. Atrazine in the diet at 10 ppm, but at no other concentrations, increased testes weight and gonadal-somatic-index and decreased the seminiferous tubule diameter-to-testis weight ratio. Atrazine in the diet at 1000 ppm increased circulating concentrations of testosterone. Dietary atrazine at 10 ppm increased circulating concentrations of estradiol. Atrazine administered systemically exerted no effect on indices of growth or reproduction. Atrazine did not mimic the effects of either estradiol or tamoxifen in male quail; thus, atrazine did not exhibit overt estrogenic or anti-estrogenic activity. It is concluded that atrazine up to 1000 ppm in the diet may exert some effects on reproductive development in sexually maturing male birds, but these are inconsistent and modest

    On Liability Insurance for Automobiles

    Get PDF
    Car owners are liable for property damage inflicted on other motorists. In most countries such liability must be insured by law. That law may favor expensive or heavy vehicles, prone to suffer or inflict large losses. This paper explores links between liability rules and vehicle choice. It presumes cooperative insurance, but non-cooperative acquisition of vehicles. Thus, the Nash equilibrium and its degree of efficiency depend on the liability regime

    ECG-Based Detection of Early Myocardial Ischemia in a Computational Model: Impact of Additional Electrodes, Optimal Placement, and a New Feature for ST Deviation

    Get PDF
    In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2-11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold. © 2015 Axel Loewe et al

    Rotor termination is critically dependent on kinetic properties of I Kur inhibitors in an In Silico model of chronic atrial fibrillation

    Get PDF
    Inhibition of the atrial ultra-rapid delayed rectifier potassium current (I Kur) represents a promising therapeutic strategy in the therapy of atrial fibrillation. However, experimental and clinical data on the antiarrhythmic efficacy remain controversial. We tested the hypothesis that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of channel blockade. A mathematical description of I Kur blockade was introduced into Courtemanche-Ramirez-Nattel models of normal and remodeled atrial electrophysiology. Effects of five model compounds with different kinetic properties were analyzed. Although a reduction of dominant frequencies could be observed in two dimensional tissue simulations for all compounds, a reduction of spiral wave activity could be only be detected in two cases. We found that an increase of the percent area of refractory tissue due to a prolongation of the wavelength seems to be particularly important. By automatic tracking of spiral tip movement we find that increased refractoriness resulted in rotor extinction caused by an increased spiral-tip meandering. We show that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of blockade. We find that an increase of the percent area of refractory tissue is the underlying mechanism for an increased spiral-tip meandering, resulting in the extinction of re-entrant circuits

    Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    Get PDF
    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration

    Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    Get PDF
    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration

    Evaluation of Corn Furan Fatty Acid Putative Endocrine Disruptors on Reproductive Performance in Adult Female Chickens

    Get PDF
    Based on evidence from rodent models, it was hypothesized that furan fatty acids found in corn would inhibit reproduction in the laying hen. An isomeric mixture of furan fatty acids [9, (12)-oxy-10,13-dihydroxystearic acid and 10, (13)-oxy-9,12-dihydroxystearic acid] was administered for a period of 3 wk via the diet (1 and 3 ppm) at levels greater than those in corn to 20-wk-old pullets. There were no overt indications of acute or chronic toxicity (no effects on mortality, feed intake, or average daily gain). Similarly, there was no dose-dependent effect on reproductive parameters [egg production, egg weight, shell thickness, ovarian weight, number or weight of large yolky preovulatory follicles, and number of small yellow follicles (4–8 mm in diameter)]. The present data do not suggest that furan fatty acids are a cause of concern to the poultry industry

    Influences of tongue biomechanics on speech movements during the production of velar stop consonants: a modeling study

    Get PDF
    This study explores the following hypothesis: forward looping movements of the tongue that are observed in VCV sequences are due partly to the anatomical arrangement of the tongue muscles and how they are used to produce a velar closure. The study uses an anatomically based 2D biomechanical tongue model. Tissue elastic properties are accounted for in finite-element modeling, and movement is controlled by constant-rate control parameter shifts. Tongue raising and lowering movements are produced by the model with the combined actions of the genioglossus, styloglossus and hyoglossus. Simulations of V1CV2 movements were made, where C is a velar consonant and V is [a], [i] or [u]. If V1 is one of the vowels [a] and [u], the resulting trajectories describe movements that begin to loop forward before consonant closure and continue to slide along the palate during the closure. This prediction is in agreement with classical data published in the literature. If V1 is vowel [i], we observe a small backward movement. This is also in agreement with some measurements on human speakers, but it is also in contradiction with the original data published by Houde (1967). These observations support the idea that the biomechanical properties of the tongue could be the main factor responsible for the forward loops when V1 is a back vowel. In the left [i] context, it seems that additional factors have to be taken into considerations, in order to explain the observations made on some speaker
    • …
    corecore