13 research outputs found

    Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report

    Get PDF
    Objectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods.Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points.Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ.Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting

    Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects Franç oise Wilhelmi de Toledo ID

    Get PDF
    International audienceOnly few studies document longer periods of fasting in large cohorts including non-obese participants. The aim of this study was to document prospectively the safety and any changes in basic health and well-being indicators during Buchinger periodic fasting within a specialised clinic. In a one-year observational study 1422 subjects participated in a fasting program consisting of fasting periods of between 4 and 21 days. Subjects were grouped in fasting period lengths of 5, 10, 15 and 20±2 days. The participants fasted according to the Buchinger guidelines with a daily caloric intake of 200-250 kcal accompanied by a moderate intensity lifestyle program. Clinical parameters as well as adverse effects and well-being were documented daily. Blood examinations before and at the end of the fasting period complemented the pre-post analysis using mixed-effects linear models. Significant reductions in weight, abdominal circumference and blood pressure were observed in the whole group (each p<0.001). A beneficial modulating effect of fasting on blood lipids, glucoregulation and further general health-related blood parameters was shown. In all groups, fasting led to a decrease in blood glucose levels to low norm range and to an increase in ketone bodies levels (each p<0.001), documenting the metabolic switch. An increase in physical and emotional well-being (each p<0.001) and an absence of hunger feeling in 93.2% of the subjects supported the feasibility of prolonged fasting. Among the 404 subjects with pre-existing health-complaints, 341 (84.4%) reported an improvement. Adverse effects were reported in less than 1% of the participants. The results from 1422 subjects showed for the first time that Buchinger periodic fasting lasting from 4 to 21 days is safe and well tolerated. It led to enhancement of emotional and physical well-being and improvements in relevant cardiovas-cular and general risk factors, as well as subjective health complaints

    Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans

    Get PDF
    Background: Dietary exposure to environmental pollutants in humans is an important public health concern. While long-term fasting interrupts the dietary exposure to these substances, fat mobilization as an energy source may also release bioaccumulated substances. This was, to our knowledge, only investigated in obese people decades ago. This study explored the effects of 10-days fasting on the excretion of heavy metals and glyphosate. Methods: Urinary levels of arsenic, chromium, cobalt, lead, nickel, mercury and glyphosate were measured before and after 10 fasting days in 109 healthy subjects. Additionally, hair analysis was done before and ten weeks after fasting in 22 subjects. Results: Fasting caused a decrease in body weight, and in urinary arsenic (by 72%) and nickel (by 15%) concentrations. A decrease in lead hair concentrations (by 30%) was documented. Urinary mercury levels were unchanged for chromium, cobalt and glyphosate, which were undetectable in most of the subjects. Additionally, fatigue, sleep disorders, headache and hunger were reduced. Body discomfort symptoms diminished four weeks after food reintroduction. Conclusions: The results of this study provide the first insights into the changes in heavy metal excretion caused by long-term fasting. Further studies focusing on the kinetics of efflux between different compartments of the body are needed. Clinical Trial Registration: https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00016657, identifier: DRKS00016657

    Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report

    No full text
    International audienceObjectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods.Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points.Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ.Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting

    Long-term fasting improves lipoprotein-associated atherogenic risk in humans

    No full text
    PURPOSE: Dyslipidemia is a major health concern associated with an increased risk of cardiovascular mortality. Long-term fasting (LF) has been shown to improve plasma lipid profile. We performed an in-depth investigation of lipoprotein composition. METHODS: This observational study included 40 volunteers (50% men, aged 32–65 years), who underwent a medically supervised fast of 14 days (250 kcal/day). Changes in lipid and lipoprotein levels, as well as in lipoprotein subclasses and particles, were measured by ultracentrifugation and nuclear magnetic resonance (NMR) at baseline, and after 7 and 14 fasting days. RESULTS: The largest changes were found after 14 fasting days. There were significant reductions in triglycerides (TG, − 0.35 ± 0.1 mmol/L), very low-density lipoprotein (VLDL)-TG (− 0.46 ± 0.08 mmol/L), VLDL-cholesterol (VLDL-C, − 0.16 ± 0.03 mmol/L) and low-density lipoprotein (LDL)-C (− 0.72 ± 0.14 mmol/L). Analysis of LDL subclasses showed a significant decrease in LDL1-C (− 0.16 ± 0.05 mmol/L), LDL2-C (− 0.30 ± 0.06 mmol/L) and LDL3-C (− 0.27 ± 0.05 mmol/L). NMR spectroscopy showed a significant reduction in large VLDL particles (− 5.18 ± 1.26 nmol/L), as well as large (− 244.13 ± 39.45 nmol/L) and small LDL particles (− 38.45 ± 44.04 nmol/L). A significant decrease in high-density lipoprotein (HDL)-C (− 0.16 ± 0.04 mmol/L) was observed. By contrast, the concentration in large HDL particles was significantly raised. Apolipoprotein A1 decreased significantly whereas apolipoprotein B, lipoprotein(a), fibrinogen and high-sensitivity C-reactive protein were unchanged. CONCLUSION: Our results suggest that LF improves lipoprotein levels and lipoprotein subclasses and ameliorates the lipoprotein-associated atherogenic risk profile, suggesting a reduction in the cardiovascular risk linked to dyslipidemia. TRIAL REGISTRATION: Study registration number: DRKS-ID: DRKS00010111 Date of registration: 03/06/2016 “retrospectively registered”. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00394-021-02578-0
    corecore