171 research outputs found
Conserved syntenic clusters of protein coding genes are missing in birds
BACKGROUND: Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. RESULTS: Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. CONCLUSIONS: Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ânatural knockoutsâ that may become invaluable model organisms for several human diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0565-1) contains supplementary material, which is available to authorized users
Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression
This is the publisherâs final pdf. The published article is copyrighted by BioMed Central Ltd and can be found at: http://www.biomedcentral.com/.Background: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. \ud
\ud
Results: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. \ud
\ud
Conclusions: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation
The behaviour of political parties and MPs in the parliaments of the Weimar Republic
Copyright @ 2012 The Authors. This is the author's accepted manuscript. The final published article is available from the link below.Analysing the roll-call votes of the MPs of the Weimar Republic we find: (1) that party competition in the Weimar parliaments can be structured along two dimensions: an economic leftâright and a pro-/anti-democratic. Remarkably, this is stable throughout the entire lifespan of the Republic and not just in the later years and despite the varying content of votes across the lifespan of the Republic, and (2) that nearly all parties were troubled by intra-party divisions, though, in particular, the national socialists and communists became homogeneous in the final years of the Republic.Zukunftskolleg, University of Konstan
Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa
This is the publisherâs final pdf. The article is copyrighted by the New Phytologist Trust and published by John Wiley & Sons, Inc. It can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291469-8137. To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.â˘Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotypeâgenotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination.\ud
â˘We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29 213 single-nucleotide polymorphisms.\ud
â˘Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r² dropping below 0.2 within 3â6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N[subscript e] â 4000â6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features.\ud
â˘Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed
A genome-wide view of Caenorhabditis elegans base-substitution mutation processes
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes
The Vehicle, 1962, Vol. 4
Vol. 4
Table of Contents
The SearchLarry Pricepage 7
If We Should MeetPauline B. Smithpage 16
Sonnet No. 1Linda Campbellpage 17
SnowflakesPauline B. Smithpage 17
Encounter in the VoidEric Crookspage 18
symbolBen Polkpage 24
The Sound of SilenceJames Wilhelmpage 24
ColoursJean Ellen Danenbargerpage 26
vegetableBen Polkpage 27
The GiftJan Holstlawpage 29
The Tiled OvenRichard Glassonpage 30
This Lover Ever WeepsBen Polkpage 31
El DoradoPauline B. Smithpage 32
I\u27m SorryMary Jean Pitratpage 32
The WalkDavid Schwarzpage 33
The Twenty-Third ChannelBen Polkpage 34
After the PicnicLinda Campbellpage 35
SoliloquyJanice Brookspage 35
JulieMyra Edmanpage 36
Poems (1) (2)Gale Crousepage 40
Boardwalk at NightSheran Broadwaypage 41
SunsetPauline B. Smithpage 42
SummerC.E.M.page 42
It\u27s Spring AgainJanice Brookspage 43
Chinese SymbolsJean Ellen Danenbargerpage 43
Why Do You Wait?Gale Crousepage 44
seekerBen Polkpage 46
Poems (3) (4) (5)Gale Crousepage 47
Opposite AttractionsC.E.M.page 48
Illustrations for the winning short story and poemDouglas Koertgehttps://thekeep.eiu.edu/vehicle/1010/thumbnail.jp
Recommended from our members
Using Mitogenomic and Nuclear Ribosomal Sequence Data to Investigate the Phylogeny of the Xiphinema americanum Species Complex
Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the taxonomic confusion of the X. americanum species complex
Recommended from our members
Host-Selective Toxins of Pyrenophora tritici-repentis Induce Common Responses Associated with Host Susceptibility
Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death
- âŚ