24 research outputs found

    The global expansion of a single ant supercolony

    Get PDF
    Ants are among the most damaging invasive species, and their success frequently arises from the widespread cooperation displayed by introduced populations, often across hundreds of kilometers. Previous studies of the invasive Argentine ant (Linepithema humile) have shown that introduced populations on different continents each contain a single, vast supercolony and, occasionally, smaller secondary colonies. Here, we perform inter-continental behavioral analyses among supercolonies in North America, Europe, Asia, Hawaii, New Zealand and Australia and show that these far-flung supercolonies also recognize and accept each other as if members of a single, globally distributed supercolony. Furthermore, populations also possess similar genetic and chemical profiles. However, these ants do show aggression toward ants from South Africa and the smaller secondary colonies that occur in Hawaii and California. Thus, the largest and most dominant introduced populations are likely descended from the same ancestral colony and, despite having been established more than 100 years ago, have diverged very little. This apparent evolutionary stasis is surprising because, in other species, some of the most rapid rates of evolutionary change have occurred in introduced populations. Given the spatial extent of the Argentine ant society we report here, there can be little doubt that this intercontinental supercolony represents the most populous known animal society

    The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ants form highly social and cooperative colonies that compete, and often fight, against other such colonies, both intra- and interspecifically. Some invasive ants take sociality to an extreme, forming geographically massive 'supercolonies' across thousands of kilometres. The success of social insects generally, as well as invasive ants in particular, stems from the sophisticated mechanisms used to accurately and precisely distinguish colonymates from non-colonymates. Surprisingly, however, the specific chemicals used for this recognition are virtually undescribed.</p> <p>Results</p> <p>Here, we report the discovery, chemical synthesis and behavioural testing of the colonymate recognition cues used by the widespread and invasive Argentine ant (<it>Linepithema humile</it>). By synthesizing pure versions of these chemicals in the laboratory and testing them in behavioural assays, we show that these compounds trigger aggression among normally amicable nestmates, but control hydrocarbons do not. Furthermore, behavioural testing across multiple different supercolonies reveals that the reaction to individual compounds varies from colony to colony -- the expected reaction to true colony recognition labels. Our results also show that both quantitative and qualitative changes to cuticular hydrocarbon profiles can trigger aggression among nestmates. These data point the way for the development of new environmentally-friendly control strategies based on the species-specific manipulation of aggressive behaviour.</p> <p>Conclusion</p> <p>Overall, our findings reveal the identity of specific chemicals used for colonymate recognition by the invasive Argentine ants. Although the particular chemicals used by other ants may differ, the patterns reported here are likely to be true for ants generally. As almost all invasive ants display widespread unicoloniality in their introduced ranges, our findings are particularly relevant for our understanding of the biology of these damaging invaders.</p

    Deciphering the Chemical Basis of Nestmate Recognition

    Get PDF
    Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains “synonyms,” chemicals that differ in structure, but not meaning

    The Effect of Diet on Colony Recognition and Cuticular Hydrocarbon Profiles of the Invasive Argentine Ant, Linepithema humile

    No full text
    Ants are some of the most abundant and ecologically successful terrestrial organisms, and invasive ants rank among the most damaging invasive species. The Argentine ant is a particularly well-studied invader, in part, because of the extreme social structure, known as unicoloniality, that occurs in introduced populations. Unicoloniality is characterized by the formation of geographically vast supercolonies, within which territorial behavior and intraspecific aggression are absent. Although there is considerable evidence supporting a genetic basis for the odor cues involved in colony recognition, some studies have suggested that diet may also influence colony recognition cues and, thus, colony structure. Here, we test the role for insect-derived recognition cues by performing a diet supplementation experiment in a natural field setting, and a more extreme dietary manipulation experiment in the lab. After one month, in both the field and the lab, we found that aggressive supercolonies remained aggressive toward each other and non-aggressive nests (from the same supercolony) remained non-aggressive, regardless of dietary treatment. In one lab treatment, we did observe a significant decrease in the level of aggression between different supercolonies that were fed the same diet, but aggression was still frequent. We did not see any evidence for cuticular hydrocarbon odor cues being transferred from prey to ants in any of the field treatments. In the more extreme lab treatment, however, several cuticular hydrocarbons were acquired from both roach and cricket insect prey (but not Drosophila). Based on these data, we conclude that dietary changes are unlikely to underlie changes in behavior or colony structure in Argentine ants in real-world settings. However, these results indicate that caution is warranted when interpreting the behaviors of animals that have been reared on diets that are substantially different from natural populations

    Single locus complementary sex determination in Hymenoptera: an "unintelligent" design?

    No full text
    Abstract The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.</p
    corecore