28 research outputs found

    Macroautophagy: a mechanism for mediating cell death or for promoting cell survival?

    Get PDF
    Macroautophagy is a ubiquitous mechanism for the bulk removal of macromolecules and cell organelles from the cell. Periyasamy-Thandavan and colleagues report that cisplatin activates autophagy in renal tubular cells and that autophagy plays a role in decreasing apoptosis of tubular cells induced by cisplatin. This finding provides novel evidence that autophagy may play a role in ameliorating the effects of acute injury on the kidney

    Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the alpha1 or the alpha2 isoform of the catalytic domain of AMPK.

    Get PDF
    International audienceBACKGROUND: The purpose of this study was to determine whether AMPK influences the survival of primary cultures of mouse proximal tubular (MPT) cells subjected to metabolic stress. Previous studies, using an immortalized MPT cell line, suggest that AMPK is activated during metabolic stress, and ameliorates stress-induced apoptosis of these cells. METHODS: Primary MPT cells were cultured from AMPK knockout (KO) mice lacking either the alpha1 or the alpha2 isoform of the catalytic domain of AMPK. MPT cells were subjected to ATP depletion using antimycin A. RESULTS: Surprisingly, there was no difference in the amount of death induced by metabolic stress of MPT cells from either type of AMPK KO mice compared to its WT control. Moreover, inhibition of the activity of the alpha1 isoform in primary MPT cells from alpha2-/- mice (pharmacologically, via compound C) or inhibition of the alpha2 isoform in primary MPT cells from alpha1-/- mice (molecularly, via knockdown) both decreased cell viability equivalently in response to metabolic stress. The explanation for this unexpected result appears to be an adaptive increase in expression of the non-deleted alphaisoform. As a consequence, total As a consequence-domain expression (i.e. alpha1 + alpha2), is comparable in kidney cortex and in cultured MPT cells derived from either type of KO mouse versus its WT control. Importantly, each alphaisoform appears able to compensate fully for the absence of the other, with respect to both the phosphorylation of downstream targets of AMPK and the amelioration of stress-induced cell death. CONCLUSIONS: These findings not only confirm the importance of AMPK as a pro-survival kinase in MPT cells during metabolic stress, but also show, for the first time, that each of the two alpha-isoforms can substitute for the other in MPT cells from AMPK KO mice with regard to amelioration of stress-induced loss of cell viability

    Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury

    Get PDF
    Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. In rat membranous nephropathy, proteinuria is due to formation of the C5b-9 membrane attack complex of complement (C), and is associated with morphological evidence of glomerular epithelial cell (GEC) injury. Analogous morphological changes are induced by C5b-9 in cultured GEC. In addition, in cultured GEC C5b-9 induces Ca2+ influx, as well as Ca2+ mobilization and increased 1,2-diacylglycerol due to the activation of phospholipase C. In this study we investigated how this GEC activation pattern might influence C-mecliated GEC injury. We demonstrate that the C5b-9-induced increase in cytosolic Ca2+ concentration ([Ca2+]i) did not impair ATP generation by mitochondria, suggesting that it does not contribute to cytotoxicity. Moreover, this increase in [Ca2+]i protected GEC from C-mediated cytolysis. However, a large increase in [Ca2+]i (produced by the Ca2+ ionophore A23187) impaired ATP generation and aggravated C-mediated cytotoxicity, suggesting that intact mitochondrial activity is necessary for GEC to withstand C attack. Activation of protein kinase C (PKC) by phorbol myristate acetate (PMA) also decreased C-mediated cytolysis. Conversely, C lysis was enhanced in GEC that had been pretreated for 18 hours with a high dose of PMA to deplete PKC, and following PKC inhibition with H-7. Therefore, PKC activation, possibly resulting from C5b-9-induced increase in 1,2-diacylglycerol, triggered mechanisms that protected GEC from C-mediated injury. Thus, as a consequence of C5b-9-induced phospholipase activation, the amount of C-induced GEC injury is diminished
    corecore