100 research outputs found

    Carboxylesterases in lipid metabolism: from mouse to human

    Get PDF

    Lipid droplet biogenesis

    No full text
    Lipid droplets (LDs) are found in most cells, where they play central roles in energy and membrane lipid metabolism. The de novo biogenesis of LDs is a fascinating, yet poorly understood process involving the formation of a monolayer bound organelle from a bilayer membrane. Additionally, large LDs can form either by growth of existing LDs or by the combination of smaller LDs through several distinct mechanisms. Here, we review recent insights into the molecular process governing LD biogenesis and highlight areas of incomplete knowledge

    Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo-Electron Tomography

    No full text
    Cryo-electron tomography (cryo-ET) has become the method of choice for investigating cellular ultrastructure and molecular complexes in their native, frozenhydrated state. However, cryo-ET requires that samples are thin enough to not scatter or block the incident electron beam. For thick cellular samples, this can be achieved by cryo-focused ion beam (FIB) milling. This protocol describes how to target specific cellular sites during FIB milling using a 3D-correlative approach, which combines three-dimensional fluorescence microscopy data with information from the FIB-scanning electron microscope. Using this technique, rare cellular events and structures can be targeted with high accuracy and visualized at molecular resolution using cryo-transmission electron microscopy (cryo-TEM)

    In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli

    No full text
    The large and small subunits of the ribosome are synthesized independently within the nucleolus - a membrane-less compartment within the nucleus - before being exported into the cytoplasm. Here, the authors use in situ cryo-ET to observe ribosome maturation and reveal the native organization of the nucleolus. Ribosomes comprise a large (LSU) and a small subunit (SSU) which are synthesized independently in the nucleolus before being exported into the cytoplasm, where they assemble into functional ribosomes. Individual maturation steps have been analyzed in detail using biochemical methods, light microscopy and conventional electron microscopy (EM). In recent years, single particle analysis (SPA) has yielded molecular resolution structures of several pre-ribosomal intermediates. It falls short, however, of revealing the spatiotemporal sequence of ribosome biogenesis in the cellular context. Here, we present our study on native nucleoli in Chlamydomonas reinhardtii, in which we follow the formation of LSU and SSU precursors by in situ cryo-electron tomography (cryo-ET) and subtomogram averaging (STA). By combining both positional and molecular data, we reveal gradients of ribosome maturation within the granular component (GC), offering a new perspective on how the liquid-liquid-phase separation of the nucleolus supports ribosome biogenesis

    COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function

    No full text
    Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible direct interaction between COPI and lipid droplets. Here, we find that COPI coat components can bud 60-nm triacylglycerol nanodroplets from artificial lipid droplet (LD) interfaces. This budding decreases phospholipid packing of the monolayer decorating the mother LD. As a result, hydrophobic triacylglycerol molecules become more exposed to the aqueous environment, increasing LD surface tension. In vivo, this surface tension increase may prime lipid droplets for reactions with neighboring proteins or membranes. It provides a mechanism fundamentally different from transport vesicle formation by COPI, likely responsible for the diverse lipid droplet phenotypes associated with depletion of COPI subunits

    Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting

    No full text
    Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism

    Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation

    No full text
    Protein degradation, a major eukaryotic response to cellular signals, is subject to numerous layers of regulation. In yeast, the evolutionarily conserved GID E3 ligase mediates glucose-induced degradation of fructose-1,6-bisphosphatase (Fbp1), malate dehydrogenase (Mdh2), and other gluconeogenic enzymes. "GID" is a collection of E3 ligase complexes; a core scaffold, RING-type catalytic core, and a supramolecular assembly module together with interchangeable substrate receptors select targets for ubiquitylation. However, knowledge of additional cellular factors directly regulating GID-type E3s remains rudimentary. Here, we structurally and biochemically characterize Gid12 as a modulator of the GID E3 ligase complex. Our collection of cryo-EM reconstructions shows that Gid12 forms an extensive interface sealing the substrate receptor Gid4 onto the scaffold, and remodeling the degron binding site. Gid12 also sterically blocks a recruited Fbp1 or Mdh2 from the ubiquitylation active sites. Our analysis of the role of Gid12 establishes principles that may more generally underlie E3 ligase regulation
    • …
    corecore