331 research outputs found

    Minimizing Vessel Strikes to Endangered Whales: A Crash Course in Conservation Science and Policy

    Get PDF
    The North Atlantic right whale is one of the most endangered of all large whales: about 350-400 individuals remain. Species recovery is, in part, contingent on reducing vessel-strike mortality. Our science-based conservation program resulted in three efforts specifically designed to minimize the risk of lethal vessel-strikes of endangered baleen whales without compromising vessel navigation and safety. In Atlantic Canada, the Bay of Fundy Traffic Separation Scheme (TSS) was relocated to reduce the risk of lethal vessel strikes by 90% where the original outbound lane of the TSS intersected the Right Whale Conservation Area, and an Area To Be Avoided (ATBA) adopted for Roseway Basin has demonstrated an 82% reduction in the risk of lethal vessel-strikes. In the Gulf of Maine, the Boston TSS through the Stellwagen Bank National Marine Sanctuary was relocated to reduce the overlap between vessels and endangered baleen whales by ~81% and by ~58% for right whales alone. This rerouting of vessels for whale conservation, as sanctioned by the International Maritime Organization, sets a precedent for national and international marine conservation policy by providing vessels with direct actions they can take to protect endangered whales – both regulated (TSS) and voluntary (ATBA). This demonstrate that despite contentious conditions, effective science-driven policy tools for conservation can be identified, made available, and implemented. The science also provides the quantitative means to measure policy efficacy through monitoring of vessel compliance and, in some cases, can increase compliance through improved real-time communications regarding whale locations in high-risk areas

    Whales and waves : humpback whale foraging response and the shoaling of internal waves at Stellwagen Bank

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2555–2570, doi:10.1002/2014JC010564.We tested the hypothesis that humpback whales aggregate at the southern flank of Stellwagen Bank (SB) in response to internal waves (IWs) generated semidiurnally at Race Point (RP) channel because of the presence of their preferred prey, planktivorous fish, which in turn respond to zooplankton concentrated by the predictable IWs. Analysis of synthetic aperture radar (SAR) images indicates that RP IWs approach the southern flank of SB frequently (∼62% of the images). Published reports of whale sighting data and archived SAR images point to a coarse spatial coincidence between whales and Race Point IWs at SB's southern flank. The responses of whales to IWs were evaluated via sightings and behavior of humpback whales, and IWs were observed in situ by acoustic backscatter and temperature measurements. Modeling of IWs complemented the observations, and results indicate a change of ∼0.4 m/s in current velocity, and ∼1.5 Pa in dynamic pressure near the bottom, which may be sufficient for bottom fish to detect the IWs. However, fish were rare in our acoustic observations, and fish response to the IWs could not be evaluated. RP IWs do not represent the leading edge of the internal tide, and they may have less mass-transport potential than typical coastal IWs. There was large interannual variability in whale sightings at SB's southern flank, with decreases in both numbers of sightings and proportion of sightings where feeding was observed from 2008 to 2013. Coincidence of whales and IWs was inconsistent, and results do not support the hypothesis.We would also like to acknowledge funding from the National Oceanic and Atmospheric Administration Sea Grant (Woods Hole), the Woods Hole Oceanographic Institution, the ESA, and the German Aerospace Center.2015-10-0

    Modeling speed restrictions to mitigate lethal collisions between ships and whales

    Get PDF
    a b s t r a c t Collision with ships is a significant cause of mortality among endangered whales. Collision lethality increases with vessel speed and mitigation includes slowing ships in whale dense areas. The 2181 km 2 Stellwagen Bank National Marine Sanctuary (SBNMS) is a site of numerous whale/ship collisions. To understand how speed reduction measures reduce lethal collisions, we used GIS to apply hypothetical speed reductions to observed ship traffic within SBNMS. During 2006, we collected complete AIS data from SBNMS vessel traffic. We created 1.85 km 2 (N = 810) grid cells covering SBNMS and determined each cell's predicted probability of lethality (PLETH) from the cell's mean speed and a mortality curve. We calculated average PLETH for the entire sanctuary (SPLETH), and used SPLETH to index status quo risk. We applied speed limits of 16, 14, 12, and 10 knots on transits and recalculated SPLETH for each scenario. Our analysis included 2,079,867 AIS points to derive 74,638 cell transits by 502 ships (>295 t). Sanctuary mean ship speed, by cell transit, was 13.5 knots (SD4.3, range 0.1-42.2). The choice of speed restriction had a major impact on SPLETH: 16 knots = À3.7%, 14 knots = À11%, 12 knots = À29.4%, 10 knots = À56.7%. The conservation benefit of speed restrictions is influenced by the status quo speed of ships from which risk must be reduced. As most areas lack such data our results can provide managers with a better understanding of how speed restrictions might reduce risk in their waters. Published by Elsevier Ltd

    Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Owen, K., Saeki, K., Warren, J. D., Bocconcelli, A., Wiley, D. N., Ohira, S., Bombosch, A., Toda, K., & Zitterbart, D. P. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Communications Biology, 4(1), (2021): 149, https://doi.org/10.1038/s42003-021-01668-3.Finding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.Open Access funding enabled and organized by Projekt DEAL. This study was funded by the Herrington Fitch Family Foundation, by the Woods Hole Oceanographic Institution Joint Initiative Awards Fund from the Andrew W. Mellon Foundation and The President’s Investment Fund, and by KAKENHI, Grants-in-Aid for Basic Research (B) (Grant no. 16H04168) and Bilateral Programs Joint Research Projects (open partnership), both from the Japan Society for the Promotion of Science. The authors thank Mrs. Norio Hayashi, Takanori Nagahata, and Ms. Mihoko Asano (Mitsubishi Chemical Analytech Co.) for their support with the SGV-CL device. The research was conducted under Scientific Research Permit number 18059, issued by the National Oceanic and Atmospheric Administration under the Marine Mammal Protection Act

    Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds from the U.S. Atlantic Coast

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11–280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1–110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5–30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds

    The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    High collocation of sand lance and protected top predators: implications for conservation and management

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Silva, T. L., Wiley, D. N., Thompson, M. A., Hong, P., Kaufman, L., Suca, J. A., Llopiz, J. K., Baumann, H., & Fay, G. High collocation of sand lance and protected top predators: implications for conservation and management. Conservation Science and Practice, (2021): 3:e274, doi: 10.1111/csp2.274.Spatial relationships between predators and prey provide critical information for understanding and predicting climate‐induced shifts in ecosystem dynamics and mitigating human impacts. We used Stellwagen Bank National Marine Sanctuary as a case study to investigate spatial overlap among sand lance (Ammodytes dubius), a key forage fish species, and two protected predators: humpback whales (Megaptera novaeangliae) and great shearwaters (Ardenna gravis). We conducted 6 years (2013–2018) of standardized surveys and quantified spatial overlap using the global index of collocation. Results showed strong, consistent collocation among species across seasons and years, suggesting that humpback whales and great shearwater distributions are tightly linked to sand lance. We propose that identifying sand lance habitats may indicate areas where humpbacks and shearwaters aggregate and are particularly vulnerable to human activities. Understanding how sand lance influence predator distributions can inform species protection and sanctuary management under present and future scenarios.This work was supported by the Bureau of Ocean Energy Management [IA agreement M17PG0019], NOAA Stellwagen Bank National Marine Sanctuary, U.S. Geological Survey, the Volgenau Foundation, and the Mudge Foundation

    Ecological Condition of Coastal Ocean Waters within Stellwagen Bank National Marine Sanctuary: 2008

    Get PDF
    In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands ( 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish
    corecore