36 research outputs found

    Spatial dimensions of stated preference valuation in environmental and resource economics: methods, trends and challenges

    Get PDF

    Structure and microbial composition of nitrifying microbial aggregates and their relation to internal mass transfer effects

    No full text
    This paper presents an analysis of the structure and microbial composition of nitrifying aggregates, formed as either flocs or granules, in sequencing batch reactors (SBR) operated with a high ammonium load. The structure and microbial community of the aggregates was determined by fluorescence in situ hybridisation (FISH). The aggregate structure and size was related to mass transfer limitations observed by measurements of OURs measured by either a titrimetric and off-gas analysis sensor (TOGA) or by microsensors. The FISH analysis showed that the spatial arrangement of the microbial consortia correlated well with the oxygen gradients inside the aggregates. In the larger aggregates, the ammonium- and nitrite-oxidising bacteria were mainly concentrated to the outer 100-200 mum, whereas in the floc system, the bacteria were distributed throughout the entire aggregate. This indicates that the internal mass transfer resistance is considerably larger when the aggregate size increases which is directly supported by TOGA measurements

    Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM)

    No full text
    A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate

    Patterning droplets with durotaxis

    No full text
    Numerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate-a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis. By modulating substrate stiffness, we obtain fine control of droplet position on soft, flat substrates. Unlike other control mechanisms, droplet durotaxis works without imposing chemical, thermal, electrical, or topographical gradients. We show that droplet durotaxis can be used to create large-scale droplet patterns and is potentially useful for many applications, such as microfluidics, thermal control, and microfabrication.open117577sciescopu

    Biomass characteristics, aeration and oxygen transfer in membrane bioreactors: their interrelations explained by a review of aerobic biological processes

    Get PDF
    Membrane bioreactor (MBR) is a promising alternative to conventional wastewater treatment methods. However this process is still under-used due to its high running costs. Its main power requirement comes from aeration, which is used to supply dissolved oxygen to the micro-organisms and to maintain the solids in suspension. In addition, in submerged MBRs, aeration is used for membrane cleaning. A complex matrix links the biomass characteristics, the aeration and the oxygen transfer. These parameters can impact on each other and/or delete one another effect. In order to understand the phenomena occurring in MBRs, similar aerobic biological processes, such as fermentation, mineral industry and slurry, were investigated. This review discusses the interrelations of the biomass characteristics (solids concentration, particle size and viscosity), the aeration intensity and the oxygen transfer in MBRs
    corecore