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Abstract Biofloc is a conglomeric aggregation of microbial communities such as phytoplank-
ton, bacteria, and living and dead particulate organic matter. Biofloc technology involves
manipulation of C/N ratio to convert toxic nitrogenous wastes into the useful microbial protein
and helps in improving water quality under a zero water exchange system. It may act as a
complete source of nutrition for aquatic organisms, along with some bioactive compounds that
will enhance growth, survival, and defense mechanisms, and acts as a novel approach for
health management in aquaculture by stimulating innate immune system of animals. Nutri-
tionally, the floc biomass provides a complete source of nutrition as well as various bioactive
compounds that are useful for improving the overall welfare indicators of aquatic organisms.
Beneficial microbial bacterial floc and its derivative compounds such as organic acids,
polyhydroxy acetate and polyhydroxy butyrate, could resist the growth of other pathogens,
thus serves as a natural probiotic and immunostimulant. The technology is useful in maintain-
ing optimum water quality parameters under a zero water exchange system, thus prevents
eutrophication and effluent discharge into the surrounding environment. Moreover, the tech-
nology will be useful to ensure biosecurity, as there is no water exchange except sludge
removal. The technology is economically viable, environmentally sustainable, and socially
acceptable.
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Introduction

To support the rapidly growing human population, food production industries such as aqua-
culture also needs horizontal as well as vertical expansion. The rapid growth of global
aquaculture industry cannot be over emphasized because environmental and economical
limitations can hamper this growth. Intensification of the aquaculture activities generates an
immense amount of excess organic pollutants that are likely to cause acute toxic effects and
long-run environmental risks (Piedrahita 2003). The foremost common method of dealing with
this problem has been the utilization of continuous replacement of the pond water through the
exchange (Gutierrez-Wing and Malone 2006). The water volume required for even small to
medium culture systems can reach up to several hundreds of cubic meters per day. Parenthet-
ically 20 m3 of water is required for the production of 1 kg shrimp (Wang 2003). A
recirculating aquaculture system (RAS) is another approach for the removal of major toxic
pollutants from the culture water without causing environmental concerns (Gutierrez-Wing
and Malone 2006). The beneficial effect of this technology is that only 10% of the total water
volume is needed to be replaced on a daily basis (Twarowska et al. 1997), but due to the high
operational and maintenance cost, the adoption of RAS among the farming community
especially in developing countries is low. Therefore, there was a wide search for years for a
low cost, sustainable, and environment-friendly technology for large-scale adoption. Biofloc
technology has gained attentions recently as a sustainable and eco-friendly method of aqua-
culture which controls water quality, along with the production of value added microbial
proteinaceous feed for the aquatic organisms. The use of BFT systems in the marine shrimp
aquaculture has been extensively studied (Emerenciano et al. 2011, 2012b, 2013b; Ray et al.
2011; Xu and Pan 2012; da Silva et al. 2013; Schveitzer et al. 2013; de Souza et al. 2014;
Kumar et al. 2014). The technology is cost-effective and environment-friendly and supports
sustainable aquaculture (Naylor et al. 2000; Avnimelech and Kochba 2009). The different
aspects of such a system can be summarized under the following headings.

I. Biofloc technology
II. Carbon-nitrogen ratio
III. Microbial community in bioflocs
IV. Nutritional composition of bioflocs
V. Biofloc as a dietary stimulant
VI. Immuno-physiological response by bioflocs
VII. Bioflocs in aquaculture

Biofloc technology

Biofloc technology (BFT) is based on the maintenance of high levels of microbial bacterial
floc in suspension using constant aeration and addition of carbohydrates to allow aerobic
decomposition of the organic material (Avnimelech and Weber 1986). By adding carbohy-
drates, heterotrophic bacterial growth is stimulated and production of microbial proteins takes
place through nitrogen uptake (Avnimelech 1999). Maintaining the C/N ratio in the aquacul-
ture system, through the external addition of carbon source or elevated carbon level in the feed,
water quality can be improved along with the production of high-quality single-cell microbial
protein (Crab et al. 2012). Under such conditions, dense microorganisms develop, functioning
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both as bioreactor controlling water quality (Avnimelech et al. 1989) and also acts as protein
food source for the fishes and shrimps (Avnimelech et al. 1994). Immobilization of toxic
nitrogen species occurs much more rapidly in bioflocs because the growth rate and microbial
biomass production per unit substrate of heterotrophs are 10 times higher than those of
autotrophic nitrifying bacteria (Hargreaves 2006). The technology works on the basic principle
of flocculation (co-culture of heterotrophic bacteria and algae) within the system (Avnimelech
2006). Biofloc technology (BFT) has been successfully implemented in aquaculture especially
shrimp farming due to economical, environmental, and marketing advantages over a conven-
tional culture system. Compared to conventional aquaculture techniques, biofloc technology
provides more economical alternative and sustainable technique in terms of minimal water
exchange and reduced feed input making it a low-cost sustainable technology for sustainable
future aquaculture development (Avnimelech and Kochba 2009; De Schryver et al. 2008). As
a startup for biofloc technology, it might be interesting to investigate the effect of adding
nucleation sites to the lined ponds which include adding calculated amounts of pond bottom
clay to the water at startup to stimulate floc formation. In addition, the inoculation with water
from existing biofloc ponds or a prepared inoculum (20 g of pond bottom soil, 10 mg
ammonium sulfate (NH)4SO4 and 200 mg of carbon sources in 1 l of water) might allow an
accelerated startup. McAbee et al. (2003) and Gaona et al. (2011) suggested the use of
nucleation sites such as soil or biofloc-rich water as inoculum from a prior production cycle
accelerates the formation of microbial flocs in the new culture system. Compared to the
productivity of various eco-friendly farming practices, the intensive farming methods with
limited water exchange provide a sustainable alternative for farming intensification and
biosecurity.

Carbon-nitrogen ratio

Carbon-nitrogen ratio (C/N) in the aquatic environment plays an important role in the
immobilization of toxic inorganic nitrogen compounds into useful bacterial cells (single-cell
protein) that may act as a direct source of food for the cultured organisms (Avnimelech 1999).
Immobilization of inorganic nitrogen takes place when the C/N ratio of the organic matter is
higher than 10 (Lancelot and Billen 1985). Thus, alteration in the C/N ratio may result in a
shift from an autotrophic to a heterotrophic system (Avnimelech 1999; Browdy and Bratvold
2001). Once a mature biofloc community is established, TAN and NO2-N concentrations can
be effectively controlled by either heterotrophic assimilation or autotrophic nitrification that
helps to maintain their concentrations at acceptable ranges for the cultured organisms even at
higher stocking densities (Xu et al. 2016). By adding a carbon source (direct or indirect C-
sources) to the culture medium in limited-discharge systems (changing C/N ratio), it is possible
to obtain a significant enhancement of useful microbial growth and the fixation of toxic
nitrogen metabolites (Ebeling et al. 2006; Hari et al. 2006; Avnimelech and Kochba 2009;
Crab et al. 2010). As the C/N ratio of bacterial cells is 5:1 (Rittmann and McCarty 2001) and
the conversion efficiency of bacteria is 40–60%, C/N ratio of 10 or more in the feed is required
for the growth of heterotrophic microorganisms (Avnimelech 1999). The bacterial process
transforms the toxic form of nitrogen (ammonia and nitrite) to one that is toxic only at high
concentrations (nitrate) by the process called nitrification. The BFT being zero water exchange
system thus tends to accumulate the nitrate in the long run, and hence usually the nitrate level
in biofloc systems increases as the culture progresses. Kuhn et al. (2009) observed that carbon
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supplementation enhanced the removal rates of TAN at 26% per hour compared to 1% per
hour in a control system. The C/N ratio of around 10 is maintained in most of the feeds used in
semi-intensive aquaculture ponds, but bacteria require about 20 units of carbon per unit of
nitrogen assimilated (Avnimelech 1999). So, when C/N ratio is low in the feed, carbon
becomes the limiting nutrient for the growth of heterotrophic bacterial populations in the
aquaculture ponds (Asaduzzaman et al. 2009) and hence the heterotrophic bacterial population
will not inflate beyond a certain point due to the limited availability of carbon in the system.
The C/N ratio in an aquaculture system can be increased by adding different locally available
cheap carbon sources (agricultural by-products) and also by the reduction of protein content in
the feed (Avnimelech 1999; Hargreaves 2006). Different organic carbon sources (glucose,
cassava, molasses, wheat, corn, sugar bagasse, sorghum meal, etc.) are used to enhance
production and to improve the nutrient dynamics through altered C/N ratio in shrimp culture
(Avnimelech 1999), and C/N ratio is also widely used as a guide for analyzing the decompo-
sition of organic matter (Alexander and Ingram 1992). The reduction of toxic nitrogenous
compounds from the intensive, well-aerated systems can be achieved by the application of
organic carbon sources and by altering the C/N ratio in the feed (Avnimelech 1999; Browdy
and Bratvold 2001). The biofloc system maintained with C/N ratio of higher than 15–20 will
be developing sufficient microbial floc to assimilate toxic nitrogenous species under intensive
farming with limited discharge. Recently, a lot of work has been published in biofloc
technology regarding the manipulation of C/N ratio, and also Biofloc Technology: A Practical
Guide Book that is directed to farmers and researchers is a tremendous step forward in
providing information on this technology (Avnimelech 2015).

Microbial community in bioflocs

Two functional categories of bacterial populations are primarily responsible for water quality
maintenance in minimal or zero water exchange systems (intensive systems) viz., heterotrophic
ammonia-assimilative and chemoautotrophic nitrifying bacteria (Ebeling et al. 2006;
Hargreaves 2006). The color changes from green to brown which takes place as the culture
progresses due to the transition from a mostly algal-dominant to a bacterial biofloc-dominant
system. The number of bacteria in biofloc ponds can be between 106 and 109/ml of floc plug
which contains between 10 and 30 mg dry matter making the pond a biotechnological industry
(Avnimelech 2007). Microbial communities formed consist of phytoplankton, bacteria, and
aggregates of living and dead particulate organic matter (Hargreaves 2006). According to Ju
et al. (2008), bioflocs collected from Litopenaeus vannamei tanks contained 24.6% phyto-
plankton (dominated by diatoms like Thalassiosira, Chaetoceros, and Navicula), 3% bacterial
biomass (two thirds was gram-negative and one third gram-positive ), a small amount of
protozoan community (98% flagellates, 1.5% rotifers, and 0.5% amoeba), and 33.2% detritus,
and the remaining quantity was ash (39.25%). Only 2–20% of the organic fraction of sludge
flocs is believed to be living (microbial cells) while the rest is of total organic matter (60–70%)
and total inorganic matter (30–40%) (Wilen et al. 2003). Dominant bacterial species that are
present in the bioflocs include Proteobacterium, Bacillus species, and Actinobacterium.
Besides this, there are some other minor bacterial species such as Roseobacter sp. and
cytophaga sp. (Zhao et al. 2012). In conventional activated sludge systems, efficient aggrega-
tion is of principal importance, since their operational success depends heavily on good settling
sludge (Bossier and Verstraete 1996). The heterotrophic bacterial population utilizes the
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ammonium in addition to the organic nitrogenous wastes to synthesize single-cell microbial
protein (Schneider et al. 2006) which act as natural feed for shrimps (Burford et al. 2004). The
sinking rate of floc aggregate will be slow at a velocity of 1 to 3 m/h when densities of the
microbial biomass move slightly above 1 g wet weight/ml (Sears et al. 2006). As the bacteria
move through the water column, efficient laminar regime (Reynolds envelope) which is
always present around bacteria which are smaller than 100 μm interferes with the nutrient
mass transfer. When the rate of substrate consumption exceeds the rate of substrate supply,
mass transfer limitations take place (Simoni et al. 2001).

Nutritional composition of bioflocs

Nutritionally, the floc biomass could provide a complete source of nutrition as well as various
bioactive compounds (Akiyama et al. 1992). The nutritional value of bioflocs is dependent on
several factors such as food preferences by the animal, their ability to ingest and digest
microbial protein, and the floc density in the water (Hargreaves 2006). The single-cell protein
formed by heterotrophic bacterial population through uptake of inorganic N can be utilized as a
source of food for cultured animals like shrimps, tilapia, and carps (Rahmatullah and
Beveridge 1993; Burford et al. 2004; Mahanand et al. 2013). In terms of quality, biofloc
contains 38% protein, 3% lipid, 6% fiber, 12% ash, and 19 kJ/g energy (on dry matter basis)
(Azim and Little 2008). Azim and Little 2008 observed 50% crude protein, 2.5% crude lipid,
4% fiber, 7% ash, and 22 kJ g−1 energy and reported that the quality of biofloc is independent
of the quality of feed used for biofloc production (35 and 22% crude protein). Ballester et al.
(2010) reported that bioflocs contain 30.4% crude protein, 4.7% crude lipid, 8.3% fiber, 39.2%
ash, and 29.1% nitrogen free extract on dry matter basis when wheat bran and molasses were
used as carbohydrates sources. Thus the change in the carbon source changes the nutritional
composition and quality index of the flocs. Besides these characteristics, the type of carbon
source also influences the palatability and digestibility of the cultured organisms (Crab 2010a;
Crab et al. 2009). Overall, bioflocs produced on glycerol gave the best results (Crab 2010a).
Biofloc enhances ingestion rate, nutrient absorption, and assimilation, and provides a complete
source of cellular nutrition (Tacon et al. 2002). Broodstock diets fortified with biofloc
supplementation improve reproductive performance in terms of fecundity, spawning, and
egg biochemical composition in Farfantepenaeus duorarum and L. Vannamei (Emerenciano
et al. 2012a, 2014). Tilapia culture inactivated suspension ponds indicated that the fish grew
well on low-protein feed (Avnimelech 1999; Milstein et al. 2001). Bioflocs are rich in proteins,
vitamins, and minerals (Brown et al. 1997; Tacon et al. 2002). Ju et al. (2008) studied the
amino acid profile of the biofloc and reported that bioflocs have a better essential amino acid
index (0.92–0.93) with histidine and taurine as the most abundant amino acids. However,
arginine and lysine were found to be the limiting amino acids in the biofloc (Avnimelech
1999).

Consumption and regeneration of bioflocs can increase feed utilization efficiency of the
microbial population by recycling feed residues and/or recovery of some fraction of excreted
nutrients (Hargreaves 2006). The microorganism not only removes excess nutrient but also
improves growth rate, feed conversion ratio, and weight gain in shrimps and tilapia (Burford
et al. 2004; Wasielesky et al. 2006). Although bioflocs meet nutritional standards, nutritional
properties and the ability to maintain water quality in the BFT system depend on the carbon
source used to produce the flocs. Different carbon sources are not only used to manipulate the
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C/N ratio and stimulate the specific bacteria, protozoa, and algae but also to influence the
microbial composition and community organization of the bioflocs (Crab et al. 2009; Crab
2010a). L. vannamei production rates and water quality were maintained without water
exchange using a biofloc system supplemented with dextrose or molasses (Antonio et al.
2015). According to Avnimelech (2007) and Emerenciano et al. (2013b), the bioflocs are rich
in natural protein and lipid and hence serve as natural in situ food for culture organisms while
at the same times act as bio-control to the system by treating the feeding waste and reducing
ammonium concentrations (Crab et al. 2007; De Schryver et al. 2008; Hargreaves 2013)
thereby maintaining the water quality. However, further research should focus on the use of
cheap and fermented non-conventional agro-industrial residues as carbon sources to upgrade
wastes as healthy feeds and to find means of fish meal replacement for the aquatic organisms.

Bioflocs as dietary stimulant

Bioflocs or its attached microorganisms could exert a positive effect on the digestive enzyme
activity of shrimp (Xu and Pan 2012). Inclusion of bioflocs in the diet at BFT 75% results in
improved growth performances and digestive enzyme activity of the common carp (
Najdegerami et al. 2016); also biofloc as a dietary supplement at a 4% level in shrimp feed
can enhance the growth and digestive enzyme activities in P. monodon (Anand et al. 2014).
Bioflocs have been recently projected as a possible novel strategy for disease management
with the Bnatural probiotic effect^ in contrast to conventional approaches such as antibiotic,
antifungal, and external probiotic and prebiotic application (Emerenciano et al. 2013a).
According to the original definition, probiotics are Borganisms and substances which contrib-
ute to intestinal microbial balance^. Fuller (1989) revised the definition as Blive microbial feed
supplement which beneficially affects the host animal by improving its intestinal microbial
balance^. Therefore, several terms such as Bfriendly ,̂ Bbeneficial^, or Bhealthy^ bacteria are
also commonly used to describe probiotics. Presently, research is going on in the field of
probiotic biofloc (bio-engineered biofloc) in which beneficial probiotic bacterial strains are
added to the biofloc to increase the bio-control over the pathogenic microbes and to improve
the quorum-sensing ability of beneficial bacterial population present in the floc, as probiotic-
based biofloc showed a bio-control effect towards the pathogenic vibrio species (Crab 2010a).
Bioactive compounds present in the floc cultures were considered to be effective enhancers of
growth and immunity in fishes and shrimps (Burford et al. 2004; Ju et al. 2008; Linan-Cabello
et al. 2002). In biofloc-based rearing units, excess nitrogen and carbon sources will lead to the
development of mixed cultures which accumulate polyhydroxy butyrate (PHB) (Salehizadeh
and Van Loosdrecht 2004). When the bacterial cell death or lysis happens in the culture
system, there will be degradation of PHB through the activity of extracellular PHB
depolymerase enzymes which are widely found in the microbes (Jendrossek and Handrick
2002). The activity of extracellular PHB depolymerase enzymes results in the release of 3-
hydroxyl butyrate into the surrounding environment (Trainer and Charles 2006). PHB can act
as a prebiotic for the cultured organisms. Prebiotics also known as immunosaccharides are
indigestible food ingredients that selectively and beneficially affect the host by stimulating the
growth of one or a limited number of bacteria in the colon thus changing the composition of
gut microflora. The carbohydrates added to the BFTcan also act as a source of prebiotics to the
cultured organisms and could modulate the gut microbial population which is beneficial to
improve the health status of the cultured organisms. Further research should be directed to
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know the role and activity of immunostimulatory and bioactive compounds present in the
biofloc, since the technology deals with bacteria and bacterial products.

Immuno-physiological response by bioflocs

The knowledge of immunology has diversified greatly due to the variety of fish that are farmed
and the inclusion of species such as zebra fish to the animal model repertoire in comparative
immunological studies (Van Der Sar et al. 2004; Yoder et al. 2002). The immune system of fish
acts as a crossroad between innate and adaptive immune responses and is hardened to the
environment and the poikilothermic nature of the fish (Tort et al. 2003). The immune responses
initiated by injury or by pathogenic invasion will entail phagocytosis and inflammatory
processes (Corbel 1975) assisted by non-specific immune cells such as macrophages, neutro-
phils, and non-specific cytotoxic cells. When bacterial load increases in the adjacent water,
they stimulate the release of high molecular weight glycoproteins from fish skin mucus (van
der Marel et al. 2010). A number of humoral factors are released by the fishes, once they are
exposed to the pathogens, such as cytokines, anti-proteases, peroxidases, lysozymes, etc.
Among them, lysozyme is a preferred marker of the immune response. Lysozyme acts as an
anti-inflammatory and antiviral agent, besides its high potential for bactericidal or bacteriolytic
activity against pathogenic gram-positive and gram-negative bacteria (Saurabh and Sahoo
2008). Recently, researchers have hypothesized possibilities of immunostimulatory features of
the bioflocs leading to enhancement of the immunity and antioxidant status of shrimps and
fishes to provide broad-based resistance towards many infections (Crab et al. 2012; Xu and
Pan 2013; Ahmad et al. 2016). The heterotrophic microbial biomass is suspected to have a
controlling effect on pathogenic bacteria (Michaud et al. 2006). Ju et al. (2008) reported that
floc carotenoids have been shown to provide essential nutritional and many bioactive phys-
iological functions in animal tissue, including stimulating the animal immune system. The
disruption of quorum-sensing, bacterial cell-to-cell communication system is a new strategy to
control bacterial infection in aquaculture. Interestingly, a similar phenomenon was observed in
bioflocs grown on glycerol against Vibrio harveyi in Artemia franciscana culture (Crab et al.
2010); it was also speculated that microbial flocs contain many strains of probiotics bacteria
(Bairagi et al. 2002).

Most of the existing immunostimulants available are a group of live and synthetic com-
pounds derived from bacteria and bacterial products and also extracts from plants and animals
(Wang et al. 2008). Since biofloc technology deals with the bacterial environment, it might
also contain some immunostimulatory compounds that are beneficial for the health of cultured
organisms. Microorganisms and their cell components have been studied and applied as
probiotics or immunostimulants in order to improve the innate immunity and antioxidant
status of the shrimp, thereby enhancing their disease resistance (Ninawe and Selvin 2009;
Smith et al. 2003; Vazquez et al. 2009). Even though bioflocs have been confirmed as being
the richest source of natural microorganisms and bioactive compounds, little effort was made
to study its effect on the physiological health of cultured shrimp, particularly concerning
immune and antioxidant defense systems. Jang et al. (2011) found that the expression of a
prophenol oxidase-activating enzyme (lvPPAE1) in hemocytes of L. vannamei was enhanced
significantly when shrimp were reared in a biofloc for a long term. More recently, Becerra-
Dorame et al. (2014) reported that L. vannamei reared in biofloc-based systems showed
improved physiological performance as indicated by selected hemolymph parameters
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including superoxide dismutase activity. Most probably, some active microorganisms enter a
shrimp body continuously along with the process of ingesting biofloc (Johnson et al. 2008)
and then modulate the immune system of the host whether as viable microbes or microbial
components (Jang et al. 2011). Therefore, in order to improve the welfare of fishes in
aquaculture, further work needs to be carried out in the exact nature of humoral innate or
cellular immune response and to determine the protective biofloc life of bacteria. Finally, this
paper proposes a long-term perspective of bioflocs that can be used as a strategic control of
diseases in aquaculture.

Bioflocs in aquaculture: future prospectus

A number of beneficial features are associated with biofloc technology along with 10–20%
potential feed gain as estimated by application of biofloc technology (Crab et al. 2007; De
Schryver et al. 2008) to nitrogen recovery from the culture system. This increase was based on
the internal recirculation of nutrients through the formation of new microbial biomass, which
was subsequently grazed by the fish (Avnimelech 2006). The advantages of the technology in
aquaculture has been well documented which includes low feed and water input (economical),
less risk of pathogen introduction and diseases, more biosecurity, increased growth and
survival, and hence increased crop yield (Otoshi et al. 2009; Crab et al. 2009; Samocha
et al. 1998, 2007; Krummenauer et al. 2011; Perez-Fuentes et al. 2013). It also lowered the
feed conversion rate by utilizing the in situ natural feed and has small footprints, hence
reducing environmental impacts (Krummenauer et al. 2014). It is also robust, easy to operate,
and economically feasible (Crab et al. 2012). The zero water exchange system has advantages
of maintaining temperature and heat fluctuations (Crab et al. 2009). It supports nitrogen
removal even when organic matter and biochemical oxygen demand of the system is high
(Avnimelech 2015). It will be important for the future BFT to understand the microbial
mechanisms involved in the process of flocculation viz., quorum sensing and controlling
effect on pathogenic microbes. BFT also improves sustainability and biosecurity and devel-
opment of high-intensity grow out systems with no water discharge over the entire crop cycle.
It can also serve as a cheap and effective immunostimulant for the cultured organisms, so more
research should focus on the optimal way to manage the BFT in the culture ponds.

Conclusion

The scarcity of water, growing demand for protein food, and conflict for land usage for the
expansion of aquacultural practices have become amajor problem at the global level. To cater to
the growing demand for animal protein, intensive aquaculture is one of the major options. But
intensification of aquaculture practices will generate a lot of effluents which will damage the
aquatic environment. Moreover, the intensification will lead to heavy dependence on fish meal
which is a scarce commodity, disease outbreaks in the cultured organisms, environmental
degradation, and socioeconomic conflicts. In an attempt to minimize the impact of the envi-
ronmental, health, and economic problems associated with aquaculture, BFT has become
increasingly popular as a sustainable alternative for intensification (Avnimelech 1999, 2006;
Browdy et al. 2001; Crab et al. 2007; De Schryver et al. 2008). The requirements for sustainable
and eco-friendly aquaculture development can be fulfilled by the use of biofloc technology.
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