1,238 research outputs found
Studies of Mass and Size Effects in Three-Dimensional Vibrofluidized Granular Mixtures
We examine the steady state properties of binary systems of driven inelastic
hard spheres. The spheres, which move under the influence of gravity, are
contained in a vertical cylinder with a vibrating base. We computed the
trajectories of the spheres using an event-driven molecular dynamics algorithm.
In the first part of the study, we chose simulation parameters that match those
of experiments performed by Wildman and Parker. Various properties computed
from the simulation including the density profile, granular temperature and
circulation pattern are in good qualitative agreement with the experiments. We
then studied the effect of varying the mass ratio and the size ratio
independently while holding the other parameters constant. The mass and size
ratio are shown to affect the distribution of the energy. The changes in the
energy distributions affect the packing fraction and temperature of each
component. The temperature of the heavier component has a non-linear dependence
on the mass of the lighter component, while the temperature of the lighter
component is approximately proportional to its mass. The temperature of both
components is inversely dependent on the size of the smaller component.Comment: 14 Pages, 12 Figures, RevTeX
Close-packed floating clusters: granular hydrodynamics beyond the freezing point?
Monodisperse granular flows often develop regions with hexagonal close
packing of particles. We investigate this effect in a system of inelastic hard
spheres driven from below by a "thermal" plate. Molecular dynamics simulations
show, in a wide range of parameters, a close-packed cluster supported by a
low-density region. Surprisingly, the steady-state density profile, including
the close-packed cluster part, is well described by a variant of Navier-Stokes
granular hydrodynamics (NSGH). We suggest a simple explanation for the success
of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let
Urinary ATP and visualization of intracellular bacteria: a superior diagnostic marker for recurrent UTI in renal transplant recipients?
Renal transplant recipients (RTR) are highly susceptible to urinary tract infections (UTIs) with over 50% of patients having at least one UTI within the first year. Yet it is generally acknowledged that there is considerable insensitivity and inaccuracy in routine urinalysis when screening for UTIs. Thus a large number of transplant patients with genuine urine infections may go undiagnosed and develop chronic recalcitrant infections, which can be associated with graft loss and morbidity. Given a recent study demonstrating ATP is released by urothelial cells in response to bacteria exposure, possibly acting at metabotropic P2Y receptors mediating a proinflammatory response, we have investigated alternative, and possibly more appropriate, urinalysis techniques in a cohort of RTRs.Mid-stream urine (MSU) samples were collected from 53 outpatient RTRs. Conventional leukocyte esterase and nitrite dipstick tests, and microscopic pyuria counts (in 1 ?l), ATP concentration measurements, and identification of intracellular bacteria in shed urothelial cells, were performed on fresh unspun samples and compared to ‘gold-standard’ bacterial culture results.Of the 53 RTRs, 22% were deemed to have a UTI by ‘gold-standard’ conventional bacteria culture, whereas 87%, 8% and 4% showed evidence of UTIs according to leukocyte esterase dipstick, nitrite dipstick, and a combination of both dipsticks, respectively. Intracellular bacteria were visualized in shed urothelial cells of 44% of RTRs, however only 1 of the 23 RTRs (44%) was deemed to have a UTI by conventional bacteria culture. A significant association of the ‘gold-standard’ test with urinary ATP concentration combined with visualization of intracellular bacteria in shed urothelial cells was determined using the Fisher’s exact test.It is apparent that standard bedside tests for UTIs give variable results and that seemingly quiescent bacteria in urothelial cells are very common in RTRs and may represent a focus of subclinical infection. Furthermore, our results suggest urinary ATP concentration combined with detection of intracellular bacteria in shed urinary epithelial cells may be a sensitive means by which to detect ‘occult’ infection in RTRs
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network
Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI
UML approach to the generation of test sequences for Java-based concurrent systems
Starting with a UML specification that captures the underlying functionality of some given Java-based concurrent system, we describe a systematic way to construct, from this specification, test sequences for validating an implementation of the system. The approach is to first extend the specification to create UML state machines that directly address those aspects of the system we wish to test. To be specific, the extended UML state machines can capture state information about the number of waiting threads or the number of threads blocked on a given object. Using the SAL model checker we can generate from the extended UML state machines sequences that cover all the various possibilities of events and states. These sequences can then be directly transformed into test sequences suitable for input into a testing tool such as ConAn. As an illustration, the methodology is applied to generate sequences for testing a Java implementation of the producer-consumer system. © 2005 IEE
Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas
We report experiments on the equipartition of kinetic energy between grains
made of two different materials in a mixture of grains vibrated in 2
dimensions. In general, the two types of grains do not attain the same granular
temperature, Tg = 1/2m v^2. However, the ratio of the two temperatures is
constant in the bulk of the system and independent of the vibration velocity.
The ratio depends strongly on the ratio of mass densities of the grains, but is
not sensitive to the inelasticity of grains. Also, this ratio is insensitive to
compositional variables of the mixture such as the number fraction of each
component and the total number density. We conclude that a single granular
temperature, as traditionally defined, does not characterize a multi-component
mixture.Comment: 4 pages, 5 figures, submitted to Physical Review Letters, updated
reference
Non-Gaussian Velocity Distribution Function in a Vibrating Granular Bed
The simulation of granular particles in a quasi two-dimensional container
under the vertical vibration as an experimental accessible model for granular
gases is performed. The velocity distribution function obeys an
exponential-like function during the vibration and deviates from the
exponential function in free-cooling states. It is confirmed that this
exponential-like distribution function is produced by Coulomb's friction force.
A Langevin equation with Coulomb's friction is proposed to describe the motion
of such the system.Comment: 4 pages, 4 figures. to be published in Journal of Physical Society of
Japan Vol.73 No.
Driven low density granular mixtures
We study the steady state properties of a 2D granular mixture in the presence
of energy driving by employing simple analytical estimates and Direct
Simulation Monte Carlo. We adopt two different driving mechanisms: a) a
homogeneous heat bath with friction and b) a vibrating boundary (thermal or
harmonic) in the presence of gravity. The main findings are: the appearance of
two different granular temperatures, one for each species; the existence of
overpopulated tails in the velocity distribution functions and of non trivial
spatial correlations indicating the spontaneous formation of cluster
aggregates. In the case of a fluid subject to gravity and to a vibrating
boundary, both densities and temperatures display non uniform profiles along
the direction normal to the wall, in particular the temperature profiles are
different for the two species while the temperature ratio is almost constant
with the height. Finally, we obtained the velocity distributions at different
heights and verified the non gaussianity of the resulting distributions.Comment: 19 pages, 12 figures, submitted for publicatio
- …