2,599 research outputs found

    Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption

    Get PDF
    The formation of boron–nitrogen (B–N) bonds has been widely explored for the synthesis of small molecules, oligomers, or linear polymers; however, its use in constructing porous organic frameworks remains very scarce. In this study, three highly porous diazaborole-linked polymers (DBLPs) have been synthesized by condensation reactions using 2,3,6,7,14,15-hexaaminotriptycene and aryl boronic acids. DBLPs are microporous and exhibit high Brunauer–Emmett–Teller surface area (730–986 m2 g−1) which enable their use in small gas storage and separation. At ambient pressure, the amorphous polymers show high CO2 (DBLP-4: 4.5 mmol g−1 at 273 K) and H2 (DBLP-3: 2.13 wt% at 77 K) uptake while their physicochemical nature leads to high CO2/N2 (35–42) and moderate CO2/CH4 (4.9–6.2) selectivity. The electronic impact of integrating diazaborole moieties into the backbone of these polymers was investigated for DBLP-4 which exhibits green emission with a broad peak ranging from 350 to 680 nm upon excitation with 340 nm in DMF without photobleaching. This study demonstrates the effectiveness of B–N formation in targeting highly porous frameworks with promising optical properties

    Pet owners' awareness of animal blood banks and their motivations towards animal blood donation

    Get PDF
    The general public’s awareness of, and attitude to, canine and feline blood donation is poorly understood. Increasing understanding of pet owners’ thoughts about donation may allow more effective blood donor recruitment. The aims of this study were to investigate pet owners’ awareness of small animal blood donation and their attitude and motivations regarding their pet being a blood donor. A mixed methods approach was used, with data collected from 158 pet owners attending a first-opinion veterinary clinic using a written questionnaire of closed and open questions. Most owners were unaware that dogs and cats could donate blood (70 per cent). However, 89 per cent stated they would be willing to let their pet donate blood if they were suitable. This was more likely if the owner did not work full time and less likely if they were aged over 71 years. Thematic analysis of owners’ motivations and deterrents towards pet blood donation resulted in four key themes: ‘Beneficence’, the desire to help others; ‘Necessity of service’, a recognition of the requirement for blood products; ‘Reciprocity’, a hope that if they participated this would result in blood products being available for their pet; and ‘Reservations and concerns’

    Board of Pharmacy

    Get PDF

    Rough-Wall Turbulent Heat Transfer Experiments in Hypersonic Free Flight

    Get PDF
    Experiments are being conducted in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to quantify the effects on turbulent convective heat transfer of surface roughness representative of a new class of 3D woven thermal protection system mRough-wall turbulent heat transfer measurements were obtained on ballistic-range models in hypersonic flight in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility. Each model had three different surface textures on segments of the conic frustum: smooth wall, sand roughness, and a pattern roughness, thus providing smooth-wall and sand-roughness reference data for each test. The pattern roughness was representative of a woven thermal protection system material developed by NASA's Heatshield for Extreme Entry Environment Technology project. The tests were conducted at launch speeds of 3.2 km/s in air at 0.15 atm. Roughness Reynolds numbers, k+, ranged for 12 to 70 for the sand roughness, and as high as 200 for the pattern roughness. Boundary-layer parameters required for calculating k+ were evaluated using computational fluid dynamics simulations. The effects of pattern roughness are generally characterized by an equivalent sand roughness determined with a correlation developed from experimental data obtained on specifically-designed roughness patterns that do not necessarily resemble real TPS materials. Two sand roughness correlations were examined: Dirling and van Rij, et al. Both gave good agreement with the measured heat-flux augmentation for the two larger pattern roughness heights tested, but not for the smallest height tested. It has yet to be determined whether this difference is due to limitations in the experimental approach, or due to limits in the correlations used. Future experiments are planned that will include roughness patterns more like those used in developing the equivalent sand roughness correlations.aterials being developed by NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Data were simultaneously obtained on sand-grain roughened surfaces and smooth surfaces, which can be compared with previously obtained data. Results are presented in this extended abstract for one roughness pattern. The full paper will include results from three roughness patterns representing virgin HEEET, nominal turbulent ablated HEEET, and twice the roughness of nominal turbulent ablated HEEET. Results will be used to compare with commonly used equivalent sand grain roughness correlations

    Joint induction of shape features and tree classifiers

    Full text link

    Transition Experiments on Blunt Bodies with Isolated Roughness Elements in Hypersonic Free Flight

    Get PDF
    Smooth titanium hemispheres with isolated three-dimensional (3D) surface roughness elements were flown in the NASA Ames hypersonic ballistic range through quiescent CO2 and air environments. Global surface intensity (temperature) distributions were optically measured and thermal wakes behind individual roughness elements were analyzed to define tripping effectiveness. Real-gas Navier-Stokes calculations of model flowfields, including laminar boundary layer development in these flowfields, were conducted predict key dimensionless parameters used to correlate transition on blunt bodies in hypersonic flow. For isolated roughness elements totally immersed within the laminar boundary layer, critical roughness Reynolds numbers for flights in air were found to be higher than those measured for flights in CO2, i.e., it was easier to trip the CO2 boundary layer to turbulence. Tripping effectiveness was found to be dependent on trip location within the subsonic region of the blunt body flowfield, with effective tripping being most difficult to achieve for elements positioned closest to the stagnation point. Direct comparisons of critical roughness Reynolds numbers for 3D isolated versus 3D distributed roughness elements for flights in air showed that distributed roughness patterns were significantly more effective at tripping the blunt body laminar boundary layer to turbulence

    Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes

    Get PDF
    Cataloged from PDF version of article.Scanning probe lithography(SPL) is capable of sub-30-nm-patterning resolution and nanometer-scale alignment registration, suggesting it might provide a solution to the semiconductor industry’s lithography challenges. However, SPL throughput is significantly lower than conventional lithography techniques. Low throughput most limits the widespread use of SPL for high resolution patterning applications. This article addresses the speed constraints for reliable patterning of organic resists. Electrons field emitted from a sharp probe tip are used to expose the resist. Finite tip-sample capacitance limits the bandwidth of current-controlled lithography in which the tip-sample voltage bias is varied to maintain a fixed emission current during exposure. We have introduced a capacitance compensation scheme to ensure continuous resist exposure of SAL601 polymerresist at scan speeds up to 1 mm/s. We also demonstrate parallel resist exposure with two tips, where the emission current from each tip is individually controlled. Simultaneous patterning with multiple tips may make SPL a viable technology for high resolution lithography. © 1999 American Institute of Physic
    • …
    corecore