2,124 research outputs found

    Positronium collisions with rare-gas atoms

    Get PDF
    We calculate elastic scattering of positronium (Ps) by the Xe atom using the recently developed pseudopotential method [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. A 90, 052717 (2014)] and review general features of Ps scattering from heavier rare-gas atoms: Ar, Kr, and Xe. The total scattering cross section is dominated by two contributions: elastic scattering and Ps ionization (breakup). To calculate the Ps ionization cross sections we use the binary-encounter method for Ps collisions with an atomic target. Our results for the ionization cross section agree well with previous calculations carried out in the impulse approximation. Our total Ps-Xe cross section, when plotted as a function of the projectile velocity, exhibits similarity with the electron-Xe cross section for the collision velocities higher than 0.8 a.u., and agrees very well with the measurements at Ps velocities above 0.5 a.u.Comment: 7 pages, 7 figures, submitted to J. Phys.

    Behavioural compensation by drivers of a simulator when using a vision enhancement system

    Get PDF
    Technological progress is suggesting dramatic changes to the tasks of the driver, with the general aim of making driving environment safer. Before any of these technologies are implemented, empirical research is required to establish if these devices do, in fact, bring about the anticipated improvements. Initially, at least, simulated driving environments offer a means of conducting this research. The study reported here concentrates on the application of a vision enhancement (VE) system within the risk homeostasis paradigm. It was anticipated, in line with risk homeostasis theory, that drivers would compensate for the reduction in risk by increasing speed. The results support the hypothesis although, after a simulated failure of the VE system, drivers did reduce their speed due to reduced confidence in the reliability of the system

    The Phase Transition to a Square Vortex Lattice in Type-II Superconductors with Fourfold Anisotropy

    Full text link
    We investigate the stability of the square vortex lattice which has been recently observed in experiments on the borocarbide family of superconductors. Taking into account the tetragonal symmetry of these systems, we add fourfold symmetric fourth-derivative terms to the Ginzburg-Landau(GL) free energy. At Hc2H_{c2} these terms may be treated perturbatively to lowest order to locate the transition from a distorted hexagonal to a square vortex lattice. We also solve for this phase boundary numerically in the strongly type-II limit, finding large corrections to the lowest-order perturbative results. We calculate the relative fourfold Hc2H_{c2} anisotropy for field in the xyxy plane to be 4.5% at the temperature, TcT_c^{\Box}, where the transition occurs at Hc2H_{c2} for field along the zz axis. This is to be compared to the 3.6% obtained in the perturbative calculation. Furthermore, we find that the phase boundary in the HTH-T phase diagram has positive slope near Hc2H_{c2}.Comment: 15 pages including 2 figures, LaTe

    Point Contact Spectroscopy of Superconducting Gap Anisotropy in Nickel Borocarbide Compound LuNi2B2C

    Get PDF
    Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the ab plane and along the c axis. It is shown that the experimental curves should be described assuming that the superconducting gap is non-uniformly distributed over the Fermi surface. The largest and the smallest gaps have been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conductivity in the c direction is made by a smaller gap and, in the ab plane by a larger gap. The deviation from the one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The temperature range, where the deviation occurs, is for the c direction approximately 1.5 times more than in the ab plane. The \Gamma parameter, allowing quantitatively estimate the gap anisotropy by one-gap fitting, in c direction is also about 1.5 times greater than in the ab plane. Since it is impossible to describe satisfactorily such gap distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over the Fermi surface should be used to describe superconductivity in this material.Comment: 10 pages, 14 Figs, accepted in PR

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio

    Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces

    Full text link
    We investigate the transport properties of a ferromagnet-superconductor interface within the framework of a modified three-dimensional Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge inhomogeneity forms via two unique transport mechanisms, namely, evanescent Andreev reflection and evanescent quasiparticle transmission. Furthermore, we take into account the influence of charge inhomogeneity on the interfacial barrier potential and calculate the conductance as a function of bias voltage. Point-contact Andreev reflection (PCAR) spectra often show dip structures, large zero-bias conductance enhancement, and additional zero-bias conductance peak. Our results indicate that transport-induced charge inhomogeneity could be a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure

    Determination of the Coherence Length and the Cooper-Pair Size in Unconventional Superconductors by Tunnelling Spectroscopy

    Full text link
    The main purpose of the paper is to discuss a possibility of the determination of the values of the coherence length and the Cooper-pair size in unconventional superconductors by using tunnelling spectroscopy. In the mixed state of type-II superconductors, an applied magnetic field penetrates the superconductor in the form of vortices which form a regular lattice. In unconventional superconductors, the inner structure of a vortex core has a complex structure which is determined by the order parameter of the superconducting state and by the pairing wavefunction of the Cooper pairs. In clean superconductors, the spatial variations of the order parameter and the pairing wavefunction occur over the distances of the order of the coherence length and the Cooper-pair size, respectively. Therefore, by performing tunnelling spectroscopy along a line passing through a vortex core, one is able, in principle, to estimate the values of the coherent length and the Cooper-pair size.Comment: 13 pages, including 17 figure

    Public and private communication with a quantum channel and a secret key

    Get PDF
    We consider using a secret key and a noisy quantum channel to generate noiseless public communication and noiseless private communication. The optimal protocol for this setting is the publicly-enhanced private father protocol. This protocol exploits random coding techniques and "piggybacking" of public information along with secret-key-assisted private codes. The publicly-enhanced private father protocol is a generalization of the secret-key-assisted protocol of Hsieh, Luo, and Brun and a generelization of a protocol for simultaneous communication of public and private information suggested by Devetak and Shor.Comment: 15 pages, 2 figure
    corecore