7 research outputs found
Observational Characterization of the Downward Atmospheric Longwave Radiation at the Surface in the City of São Paulo
This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m-2; January), and the minimum is observed during winter (332 ± 12 W m-2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m-2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m-2) at 0900 LT and a maximum (345 ± 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach
Interactions between aerosal and convective boundary-layer dynamics over land
In this Section, we summarize the most important findings and relevant issues treated in detail in Chapters 2 to 5. The primary conclusion of this thesis is that it is necessary to take aerosols into account to accurately describe the convective atmospheric boundary-layer (CBL) dynamics and the land-surface processes. We reached this conclusion by systematically studying the land-CBL system and its couplings, and employed a hierarchy of models ranging from an eddy-resolving model (large-eddy simulation; LES) to non-eddy resolving models (mixed-layer model, and single column model). In addition to the numerical component, we used a complete observational data set to help us design and evaluate our numerical framework. Chapter 2 was devoted to the explanation of the radiative transfer code used in Chapters 4 and 5. We showed that despite the simplified treatment of solar radiation and its interactions with aerosols, our radiative code is in general agreement with a more sophisticated radiative transfer code, even for extreme aerosol loads. Moreover, our results reproduce observations of direct and diffuse radiation at the surface accordingly - as shown in Chapter 4. Regarding the longwave band, we showed that aerosols are not relevant for the estimation of the incoming longwave radiation at the surface. We concluded that Brunt's formula, depending only on screen level temperature and vapor pressure, is the most adequate to represent the incoming longwave radiation at the surface for the cases relevant for our studies. In Chapter 3 we investigated the impact of aerosol heat absorption on the dynamics of an idealized CBL with prescribed surface fluxes. We found that the structure and evolution of the CBL were influenced by the vertical distribution of the aerosols. Moreover, we showed that the aerosols influence the exchange of heat between the CBL and the free troposphere by (i) extinction of radiation and consequently reduced surface fluxes, and by (ii) deepening the entrainment zone depth. We highlighted the importance of high-resolution models to properly represent the effects of aerosol absorption of radiation on the dynamics of the CBL, especially in the entrainment zone. We demonstrated that, in addition to the properties of the aerosols, the vertical distribution is an important characteristic to properly describe the CBL height evolution and the dynamics of the upper part of the CBL. To further support the analysis of the LES results, we used a mixed-layer (MXL) model to calculate boundary-layer depth and the potential temperature jump at the inversion layer. In spite of the simplicity of this model, the mixed-layer results obtained for boundary-layer height and the inversion layer jump agreed well with the LES results. Extending the knowledge acquired with the academical prototypical experiments performed in Chapter 3, in Chapter 4 we quantified the effects of aerosol scattering and absorption of shortwave (SW) radiation both on the surface energy budget and on the CBL dynamics. To this end, we coupled our LES model and the MXL model to (i) a land-surface model and (ii) a broadband SW radiative transfer model, (described in Chapter 2). We successfully validated the results obtained with the LES model and MXL model using measurements of (thermo)dynamic variables and aerosol properties observed in Cabauw (the Netherlands). Our LES results showed that for Cabauw (over well-watered grassland) aerosols significantly alter the magnitude of the available energy at the surface and its partitioning. Under well-watered conditions, the sensible heat flux was more strongly reduced compared to the latent heat flux. Given the satisfactory agreement between the LES results and MXL model results, we further explored the sensitivity of the land-CBL system to a wide range of aerosol optical depths and single scattering albedos using the MXL model. Our results showed that higher loads of aerosols impose an energy restriction at the surface. As a result, we calculated a delay in the morning onset of the CBL and an advance in the CBL afternoon collapse. We also found that entrainment of aerosols from the residual layer plays a significant role in the development of the CBL dynamics during the day. An important aspect of Chapter 4 is the investigation of the different responses of the CBL dynamics depending on aerosol optical properties. Strongly absorbing aerosols deepened and warmed the CBL, while purely scattering aerosols shallowed and cooled the CBL. We highlighted that the results presented in Chapter 4 can be used as a benchmark to evaluate coupling and performance of the parametrizations for SW radiation, land-surface and boundary-layer schemes, implemented in mesoscale or global chemistry transport models. In Chapter 5 we increased the complexity of our land-CBL system representation by studying the formation and transport of ammonium nitrate aerosols. In doing so, we coupled in our LES radiation, chemistry, aerosols, CBL dynamics, and surface exchange processes of chemicals, heat and moisture. Our fully coupled LES model was again evaluated against observations of chemistry and aerosol fields and showed a good correspondence. In particular, our results showed a satisfactory agreement between the simulated and observed nitrate partitioning at the surface. We showed that gas-aerosol conversion of nitrate leads to highly non-linear profiles of nitrate concentrations and turbulent fluxes. Moreover, the shapes of the simulated profiles depended strongly on the time scale of gas-aerosol conversions. Note that the typical timescale of turbulent motions in the CBL is around 10-20 minutes. For shorter time scales of gas-aerosol conversion compared to the CBL dynamics timescale, we found that turbulent fluxes are larger and concentration profiles more tilted within the CBL. These results have a significant impact on the nitrate deposition flux at the surface. Our LES results confirmed that the large deposition velocities for aerosol nitrate close to the surface are actually due to outgassing of aerosol nitrate rather than a real deposition process. An important aspect discussed in Chapter 5 concerns the inability of non-eddy resolving models to accurately model the turbulent transport of nitrate within the CBL. Based on a detailed analysis of the flux budget equation, we showed that the exchange coefficient of heat used in our 1D model has to be increased to better account for the complex interaction between gas-aerosol conversion of nitrate and 3D turbulence within the CBL. Indeed, the new exchange coefficient also improved the comparison between gas-aerosol partitioning of nitrate calculated with our 1D model and surface observations. The results discussed in this thesis demonstrate the need for considering the influence of aerosols on the CBL dynamics. Specifically, aerosols influence important phenomena for the CBL evolution namely radiation, surface-atmosphere interactions, chemistry, and (thermo)dynamics. In addition to that, the availability of high-resolution numerical simulations is crucial to validate and evaluate results obtained by numerical models that do not explicitly resolve the turbulent field
Numerical simulation of the interaction between ammonium nitrate aerosol and convective boundary-layer dynamics
We investigate the interaction between the ammonium nitrate aerosol (View the MathML sourceNAO3) abundance and convective boundary-layer (CBL) dynamics by means of a large-eddy simulation (LES) framework. In our LES model the CBL dynamics is solved coupled with radiation, chemistry, and surface exchange. Concerning the aerosol coupling we assume a simplified representation that accounts for black carbon, aerosol water and inorganic aerosols, focusing on the semi-volatile ammonium nitrate aerosol within the CBL. The aerosol absorption and scattering of shortwave radiation is also taken into consideration. We use a data set of observations taken at the Cabauw Experimental Site for Atmospheric Research during the IMPACT/EUCAARI (European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions) campaign to successfully evaluate our LES approach. We highlight that our LES framework reproduces the observations of the ratio between gas-phase nitrate and total nitrate at the surface, with a diurnally-averaged overestimation of only ˜12%. We show that the dependence between gas-aerosol conversion of nitrate and CBL (thermo)dynamics produces highly non-linear concentration and turbulent flux vertical profiles. The flux profiles maximize at around 1/3 of the CBL. Close to the surface, we show that the outgassing of View the MathML sourceNAO3 affects the dry deposition of nitrate. This outgassing is responsible for the high deposition velocities obtained from the concentration and flux measurements during observational campaigns. To account for the influence of CBL (thermo)dynamics on gas-aerosol conversion we propose an effective turbulent exchange coefficient based on an analysis of the flux budget equation of aerosol nitrate calculated by our LES. The implementation of this effective turbulent exchange coefficient in a 1D model leads to a better agreement with the LES results and with surface observations
Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer
We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depthequilibrium for different vertical profiles of aerosol heating rates. Our results indicated that aerosol heat absorption decreased the depth of the CBL due to a combination of factors: (i) surface shadowing, reducing the sensible heat flux at the surface and, (ii) the development of a deeper inversion layer, stabilizing the upper CBL depending on the vertical aerosol distribution. Steady-state analytical solutions for CBL depth and potential temperature jump, derived using zero-order mixed-layer theory, agreed well with the large-eddy simulations. An analysis of the entrainment zone heat budget showed that, although the entrainment flux was controlled by the reduction in surface flux, the entrainment zone became deeper and less stably stratified. Therefore, the vertical profile of the aerosol heating rate promoted changes in both the structure and evolution of the CBL. More specifically, when absorbing aerosols were present only at the top of the CBL, we found that stratification at lower levels was the mechanism responsible for a reduction in the vertical velocity and a steeper decay of the turbulent kinetic energy throughout the CBL. The increase in the depth of the inversion layer also modified the potential temperature variance. When aerosols were present we observed that the potential temperature variance became significant already around 0.7zi (where zi is the CBL height) but less intense at the entrainment zone due to the smoother potential temperature vertical gradient
Radiation balance at the surface in the city of São Paulo, Brazil: diurnal and seasonal variations
The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of São Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation (Q*), downwelling and upwelling shortwave radiation (SWDW, SWUP), and longwave radiations (LWDW, LWUP) in February were, respectively, 37%, 14%, 19%, 11%, and 5% larger than they were in August. The monthly average daily values indicate a variation of 60% for Q*, with a minimum in June and a maximum in December; 45% for SWDW, with a minimum in May and a maximum in September; 50% for SWUP, with a minimum in June and a maximum in September; 13% for LWDW, with a minimum in July and a maximum in January; and 9% for LWUP, with a minimum in July and a maximum in February. It was verified that the atmospheric broadband transmissivity varied from 0.36 to 0.57; the effective albedo of the surface varied from 0.08 to 0.10; and the atmospheric effective emissivity varied from 0.79 to 0.92. The surface effective emissivity remained approximately constant and equal to 0.96. The albedo and surface effective emissivity for São Paulo agreed with those reported for urban areas Europe and North America cities. This indicates that material and geometric effects on albedo and surface emissivity in São Paulo are similar to ones observed in typical middle latitudes cities. On the other hand, it was found that São Paulo city induces an urban heat island with daytime maximum intensity varying from 2.6°C in July (16:00 LT) to 5.5°C in September (15:00 LT). The analysis of the radiometric properties carried out here indicate that this daytime maximum is a primary response to the seasonal variation of daily values of net solar radiation at the surface
Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system
By combining observations and numerical simulations, we investigated the responses of the surface energy budget and the convective boundary layer (CBL) dynamics to the presence of aerosols. A detailed data set containing (thermo)dynamic observations at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions was employed to design numerical experiments reproducing two typical clear-sky days, each characterized by contrasting thermodynamic initial profiles: (i) residual layer above a strong surface inversion and (ii) well-mixed CBL connected to the free troposphere by a capping inversion, without the residual layer in between. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, coupled to a broadband radiative transfer code and a land surface model, were used to study the impacts of aerosols on shortwave radiation. Both the LES model and the MXL model results reproduced satisfactorily the observations for both days. A sensitivity analysis on a wide range of aerosol properties was conducted. Our results showed that higher loads of aerosols decreased irradiance imposing an energy restriction at the surface, delaying the morning onset of the CBL and advancing its afternoon collapse. Moderately to strongly absorbing aerosols increased the heating rate contributing positively to increase the afternoon CBL height and potential temperature and to decrease Bowen ratio. In contrast, scattering aerosols were associated with smaller heating rates and cooler and shallower CBLs. Our findings advocate the need for accounting for the aerosol influence in analyzing surface and CBL dynamics