194 research outputs found

    The Fermi Surface Effect on Magnetic Interlayer Coupling

    Full text link
    The oscillating magnetic interlayer coupling of Fe over spacer layers consisting of Cux_{x}Pd1x_{1-x} alloys is investigated by first principles density functional theory. The amplitude, period and phase of the coupling, as well as the disorder-induced decay, are analyzed in detail and the consistency to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory is discussed. For the first time an effect of the Fermi surface nesting strength on the amplitude is established from first principles calculations. An unexpected variation of the phase and disorder-induced decay is obtained and the results are discussed in terms of asymptotics

    Fully relativistic calculation of magnetic properties of Fe, Co and Ni adclusters on Ag(100)

    Full text link
    We present first principles calculations of the magnetic moments and magnetic anisotropy energies of small Fe, Co and Ni clusters on top of a Ag(100) surface as well as the exchange-coupling energy between two single adatoms of Fe or Co on Ag(100). The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method. The magnetic anisotropy and the exchange-coupling energies are calculated by means of the force theorem. In the case of adatoms and dimers of iron and cobalt we obtain enhanced spin moments and, especially, unusually large orbital moments, while for nickel our calculations predict a complete absence of magnetism. For larger clusters, the magnitudes of the local moments of the atoms in the center of the cluster are very close to those calculated for the corresponding monolayers. Similar to the orbital moments, the contributions of the individual atoms to the magnetic anisotropy energy strongly depend on the position, hence, on the local environment of a particular atom within a given cluster. We find strong ferromagnetic coupling between two neighboring Fe or Co atoms and a rapid, oscillatory decay of the exchange-coupling energy with increasing distance between these two adatoms.Comment: 8 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Exercise-induced modulation of cardiac lipid content in healthy lean young men

    Get PDF
    Cardiac lipid accumulation is associated with decreased cardiac function and energy status (PCr/ATP). It has been suggested that elevated plasma fatty acid (FA) concentrations are responsible for the cardiac lipid accumulation. Therefore, the aim of the present study was to investigate if elevating plasma FA concentrations by exercise results in an increased cardiac lipid content, and if this influences cardiac function and energy status. Eleven male subjects (age 25.4 ± 1.1 years, BMI 23.6 ± 0.8 kg/m2) performed a 2-h cycling protocol, once while staying fasted and once while ingesting glucose, to create a state of high versus low plasma FA concentrations, respectively. Cardiac lipid content was measured by proton magnetic resonance spectroscopy (1H-MRS) at baseline, directly after exercise and again 4 h post-exercise, together with systolic function (by multi-slice cine-MRI) and cardiac energy status (by 31P-MRS). Plasma FA concentrations were increased threefold during exercise and ninefold during recovery in the fasted state compared with the glucose-fed state (p < 0.01). Cardiac lipid content was elevated at the end of the fasted test day (from 0.26 ± 0.04 to 0.44 ± 0.04%, p = 0.003), while it did not change with glucose supplementation (from 0.32 ± 0.03 to 0.26 ± 0.05%, p = 0.272). Furthermore, PCr/ATP was decreased by 32% in the high plasma FA state compared with the low FA state (n = 6, p = 0.014). However, in the high FA state, the ejection fraction 4 h post-exercise was higher compared with the low FA state (63 ± 2 vs. 59 ± 2%, p = 0.018). Elevated plasma FA concentrations, induced by exercise in the fasted state, lead to increased cardiac lipid content, but do not acutely hamper systolic function. Although the lower cardiac energy status is in line with a lipotoxic action of cardiac lipid content, a causal relationship cannot be proven

    The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0

    Get PDF
    Marine sediments play a crucial role in the global carbon cycle by acting as the ultimate sink of both terrestrial and marine organic carbon. To understand the spatiotemporal variability in the content, sources, and dynamics of organic carbon in marine sediments, a curated and harmonized database of organic carbon and associated parameters is needed, which has prompted the development of the Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC) database (http://mosaic.ethz.ch/, last access: 26 July 2023; https://doi.org/10.5281/zenodo.8322094, Paradis, 2023; https://doi.org/10.5168/mosaic019.1, Van der Voort et al., 2019​​​​​​​). MOSAIC version 2.0 has expanded the spatiotemporal coverage of the original database by &gt;400 % and now holds data from more than 21 000 individual sediment cores from different continental margins on a global scale. Additional variables have also been incorporated into MOSAIC v.2.0 that are crucial to interpret the quantity, origin, and age of organic carbon in marine sediments globally. Sedimentological parameters (e.g. grain size fractions and mineral surface area) help understand the effect of hydrodynamic sorting and mineral protection on the distribution of organic carbon, while molecular biomarker signatures (e.g. lignin phenols, fatty acids, and alkanes) can help constrain the specific origin of organic matter. MOSAIC v.2.0 also stores data on specific sediment and molecular fractions, which provide further insight into the processes that affect the degradation and ageing of organic carbon in marine sediments. Data included within MOSAIC are continuously expanding, and version control will allow users to benefit from updated versions while ensuring reproducibility of their findings.</p

    Vitamin K Antagonists, Non-Vitamin K Antagonist Oral Anticoagulants, and Vascular Calcification in Patients with Atrial Fibrillation

    Get PDF
    Background  Vitamin K antagonists (VKAs) are associated with coronary artery calcification in low-risk populations, but their effect on calcification of large arteries remains uncertain. The effect of non-vitamin K antagonist oral anticoagulants (NOACs) on vascular calcification is unknown. We investigated the influence of use of VKA and NOAC on calcification of the aorta and aortic valve. Methods  In patients with atrial fibrillation without a history of major adverse cardiac or cerebrovascular events who underwent computed tomographic angiography, the presence of ascending aorta calcification (AsAC), descending aorta calcification (DAC), and aortic valve calcification (AVC) was determined. Confounders for VKA/NOAC treatment were identified and propensity score adjusted logistic regression explored the association between treatment and calcification (Agatston score > 0). AsAC, DAC, and AVC differences were assessed in propensity score-matched groups. Results  Of 236 patients (33% female, age: 58 ± 9 years), 71 (30%) used VKA (median duration: 122 weeks) and 79 (34%) used NOAC (median duration: 16 weeks). Propensity score-adjusted logistic regression revealed that use of VKA was significantly associated with AsAC (odds ratio [OR]: 2.31; 95% confidence interval [CI]: 1.16-4.59; p  = 0.017) and DAC (OR: 2.38; 95% CI: 1.22-4.67; p  = 0.012) and a trend in AVC (OR: 1.92; 95% CI: 0.98-3.80; p  = 0.059) compared with non-anticoagulation. This association was absent in NOAC versus non-anticoagulant (AsAC OR: 0.51; 95% CI: 0.21-1.21; p  = 0.127; DAC OR: 0.80; 95% CI: 0.36-1.76; p  = 0.577; AVC OR: 0.62; 95% CI: 0.27-1.40; p  = 0.248). A total of 178 patients were propensity score matched in three pairwise comparisons. Again, use of VKA was associated with DAC ( p  = 0.043) and a trend toward more AsAC ( p  = 0.059), while use of NOAC was not (AsAC p  = 0.264; DAC p  = 0.154; AVC p  = 0.280). Conclusion  This cross-sectional study shows that use of VKA seems to contribute to vascular calcification. The calcification effect was not observed in NOAC users

    T-staging of rectal cancer: accuracy of 3.0 Tesla MRI compared with 1.5 Tesla

    Get PDF
    OBJECTIVES: Magnetic resonance imaging (MRI) is not accurate in discriminating T1-2 from borderline T3 rectal tumors. Higher resolution on 3 Tesla-(3T)-MRI could improve diagnostic performance for T-staging. The aim of this study was to determine whether 3T-MRI compared with 1.5 Tesla-(1.5T)-MRI improves the accuracy for the discrimination between T1-2 and borderline T3 rectal tumors and to evaluate reproducibility. METHODS: 13 patients with non-locally advanced rectal cancer underwent imaging with both 1.5T and 3T-MRI. Three readers with different expertise evaluated the images and predicted T-stage with a confidence level score. Receiver operator characteristics curves with areas under the curve (AUC) and diagnostic parameters were calculated. Inter- and intra-observer agreements were calculated with quadratic kappa-weighting. Histology was the reference standard. RESULTS: Seven patients had pT1-2 tumors and six had pT3 tumors. AUCs ranged from 0.66 to 0.87 at 1.5T vs. 0.52-0.82 at 3T. Mean overstaging rate was 43% at 1.5T and 57% at 3T (P = 0.23). Inter-observer agreement was kappa 0.50-0.71 at 1.5T vs. 0.15-0.68 at 3T. Intra-observer agreement was kappa 0.71 at 1.5T and 0.76 at 3T. CONCLUSIONS: This is the first study to compare 3T with 1.5T MRI for T-staging of rectal cancer within the same patients. Our results showed no difference between 3T and 1.5T-MRI for the distinction between T1-2 and borderline T3 tumors, regardless of expertise. The higher resolution at 3T-MRI did not aid in the distinction between desmoplasia in T1-2-tumors and tumor stranding in T3-tumors. Larger studies are needed to acknowledge these findings

    The role of cardiovascular magnetic resonance imaging and computed tomography angiography in suspected non-ST-elevation myocardial infarction patients:Design and rationale of the CARdiovascular Magnetic rEsoNance imaging and computed Tomography Angiography (CARMENTA) trial

    Get PDF
    BackgroundAlthough high-sensitivity cardiac troponin (hs-cTn) substantially improves the early detection of myocardial injury, it lacks specificity for acute myocardial infarction (MI). In suspected non–ST-elevation MI, invasive coronary angiography (ICA) remains necessary to distinguish between acute MI and noncoronary myocardial disease (eg, myocarditis), unnecessarily subjecting the latter to ICA and associated complications. This trial investigates whether implementing cardiovascular magnetic resonance (CMR) or computed tomography angiography (CTA) early in the diagnostic process may help to differentiate between coronary and noncoronary myocardial disease, thereby preventing unnecessary ICA.Study DesignIn this prospective, single-center, randomized controlled clinical trial, 321 consecutive patients with acute chest pain, elevated hs-cTnT, and nondiagnostic electrocardiogram are randomized to 1 of 3 strategies: (1) CMR, or (2) CTA early in the diagnostic process, or (3) routine clinical management. In the 2 investigational arms of the study, results of CMR or CTA will guide further clinical management. It is expected that noncoronary myocardial disease is detected more frequently after early noninvasive imaging as compared with routine clinical management, and unnecessary ICA will be prevented. The primary end point is the total number of patients undergoing ICA during initial admission. Secondary end points are 30-day and 1-year clinical outcome (major adverse cardiac events and major procedure-related complications), time to final diagnosis, quality of life, and cost-effectiveness.ConclusionThe CARMENTA trial investigates whether implementing CTA or CMR early in the diagnostic process in suspected non–ST-elevation MI based on elevated hs-cTnT can prevent unnecessary ICA as compared with routine clinical management, with no detrimental effect on clinical outcome

    Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring

    Get PDF
    Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) A mu Sv/Gy cm(2) versus (phase 2) 0.08 (0.02-0.24) A mu Sv/Gy cm(2), p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions

    MRI of Arterial Flow Reserve in Patients with Intermittent Claudication: Feasibility and Initial Experience

    Get PDF
    Objectives: The aim of this work was to develop a MRI method to determine arterial flow reserve in patients with intermittent claudication and to investigate whether this method can discriminate between patients and healthy control subjects. Methods: Ten consecutive patients with intermittent claudication and 10 healthy control subjects were included. All subjects underwent vector cardiography triggered quantitative 2D cine MR phase-contrast imaging to obtain flow waveforms of the popliteal artery at rest and during reactive hyperemia. Resting flow, maximum hyperemic flow and absolute flow reserve were determined and compared between the two groups by two independent MRI readers. Also, interreader reproducibility of flow measures was reported. Results: Resting flow was lower in patients compared to controls (4.961.6 and 11.163.2 mL/s in patients and controls, respectively (p,0.01)). Maximum hyperemic flow was 7.362.9 and 16.463.2 mL/s (p,0.01) and the absolute flow reserve was 2.461.6 and 5.361.3 mL/s (p,0.01), respectively in patients and controls. The interreader coefficient of variation was below 10 % for all measures in both patients and controls. Conclusions: Quantitative 2D MR cine phase-contrast imaging is a promising method to determine flow reserve measures in patients with peripheral arterial disease and can be helpful to discriminate patients with intermittent claudication fro

    Association between Carotid Plaque Characteristics and Cerebral White Matter Lesions: One-Year Follow-Up Study by MRI

    Get PDF
    Objective: To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI. Methods: Fifty TIA/stroke patients with ipsilateral 30-69% carotid stenosis underwent MRI of the plaque at baseline. Total plaque volume and markers of vulnerability to thromboembolism (lipid-rich necrotic core [LRNC] volume, fibrous cap [FC] status, and presence of intraplaque hemorrhage [IPH]) were assessed. All patients also underwent brain MRI at baseline and after one year. Ipsilateral cerebral WMLs were quantified with a semiautomatic method. Results: Mean WML volume significantly increased over a one-year period (6.52 vs. 6.97 mm3, P = 0.005). WML volume at baseline and WML progression did not significantly differ (P>0.05) between patients with 30-49% and patients with 50-69% stenosis. There was a significant correlation between total plaque volume and baseline ipsilateral WML volume (Spearman ¿ = 0.393, P = 0.005). There was no significant correlation between total plaque volume and ipsilateral WML progression. There were no significant associations between LRNC volume and WML volume at baseline and WML progression. WML volume at baseline and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC. WML volume at baseline and WML progression also did not significantly differ between patients with and without IPH. Conclusion: The results of this study indicate that carotid plaque burden is significantly associated with WML severity, but that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs. © 2011 Kwee et al
    corecore