415 research outputs found

    Modelling the failure precursor mechanism of lamellar fibrous tissues, example of the annulus fibrosus

    Get PDF
    The aims of this study were to assess the damage and failure strengths of lamellar fibrous tissues, such as the anterior annulus fibrosus (AF), and to develop a mathematical model of damage propagation of the lamellae and inter-lamellar connections. This level of modelling is needed to accurately predict the effect of damage and failure induced by trauma or clinical interventions. 26 ovine anterior AF cuboid specimens from 11 lumbar intervertebral discs were tested in radial tension and mechanical parameters defining damage and failure were extracted from the in-vitro data. Equivalent 1D analytical models were developed to represent the specimen strength and the damage propagation, accounting for the specimen dimensions and number of lamellae. Model parameters were calibrated on the in-vitro data. Similar to stiffness values reported for other orientations, the outer annulus was found stronger than the inner annulus in the radial direction, with failure at higher stress values. The inner annulus failed more progressively, showing macroscopic failure at a higher strain value. The 1D analytical model of damage showed that lamellar damage is predominant in the failure mechanism of the AF. The analytical model of the connections between lamellae allowed us to represent separately damage processes in the lamellae and the inter-lamellar connections, which cannot be experimentally tested individually

    Optimizing computational methods of modeling vertebroplasty in experimentally augmented human lumbar vertebrae

    No full text
    Vertebroplasty has been widely used for the treatment of osteoporotic compression fractures but the efficacy of the technique has been questioned by the outcomes of randomized clinical trials. Finite‐element (FE) models allow an investigation into the structural and geometric variation that affect the response to augmentation. However, current specimen‐specific FE models are limited due to their poor reproduction of cement augmentation behavior. The aims of this study were to develop new methods of modeling the vertebral body in both a nonaugmented and augmented state. Experimental tests were conducted using human lumbar spine vertebral specimens. These tests included micro‐computed tomography imaging, mechanical testing, augmentation with cement, reimaging, and retesting. Specimen‐specific FE models of the vertebrae were made comparing different approaches to capturing the bone material properties and to modeling the cement augmentation region. These methods significantly improved the modeling accuracy of nonaugmented vertebrae. Methods that used the registration of multiple images (pre‐ and post‐augmentation) of a vertebra achieved good agreement between augmented models and their experimental counterparts in terms of predictions of stiffness. Such models allow for further investigation into how vertebral variation influences the mechanical outcomes of vertebroplasty

    Examination of an in-vitro methodology to evaluate the biomechanical performance of nucleus augmentation in axial compression

    Get PDF
    Intervertebral disc degeneration is one of the leading causes of back pain, but treatment options remain limited. Recently, there have been advances in the development of biomaterials for nucleus augmentation; however, the testing of such materials preclinically has proved challenging. The aim of this study was to develop methods for fabricating and testing bone-disc-bone specimens in vitro for examining the performance of nucleus augmentation procedures. Control, nucleotomy and treated intervertebral disc specimens were fabricated and tested under static load. The nucleus was removed from nucleotomy specimens using a trans-endplate approach with a bone plug used to restore bony integrity. Specimen-specific finite element models were developed to elucidate the reasons for the variations observed between control specimens. Although the computational models predicted a statistically significant difference between the healthy and nucleotomy groups, the differences found experimentally were not significantly different. This is likely due to variations in the material properties, hydration and level of annular collapse. The deformation of the bone was also found to be non-negligible. The study provides a framework for the development of testing protocols for nucleus augmentation materials and highlights the need to control disc hydration and the length of bone retained to reduce inter-specimen variability

    On the effect of the inter-lamellar behaviour in a finite element model of the annulus fibrosus

    Get PDF

    Peptide:glycosaminoglycan hybrid hydrogels as an injectable intervention for spinal disc degeneration

    Get PDF
    Degeneration of the spinal discs is a major cause of back pain. During the degeneration process, there is a loss of glycosaminoglycans (GAGs) from the proteoglycan-rich gel in the disc’s nucleus, which adversely alters biomechanical performance. Current surgical treatments for back pain are highly invasive and have low success rates; there is an urgent need for minimally-invasive approaches that restore the physiological mechanics of the spine. Here we present an injectable peptide:GAG hydrogel that rapidly self-assembles in situ and restores the mechanics of denucleated intervertebral discs. It forms a gel with comparable mechanical properties to the native tissue within seconds to minutes depending on the peptide chosen. Unlike other biomaterials that have been proposed for this purpose, these hybrid hydrogels can be injected through a very narrow 25 G gauge needle, minimising damage to the surrounding soft tissue, and they mimic the ability of the natural tissue to draw in water by incorporating GAGs. Furthermore, the GAGs enhance the gelation kinetics and thermodynamic stability of peptide hydrogels, significantly reducing effusion of injected material from the intervertebral disc (GAG leakage of 8 ± 3% after 24 hrs when peptide present, compared to 39 ± 3% when no peptide present). In an ex vivo model, we demonstrate that the hydrogels can restore the compressive stiffness of denucleated bovine intervertebral discs. Compellingly, this novel biomaterial has the potential to transform the clinical treatment of back pain by resolving current surgical challenges, thus improving patient quality of life

    A methodology for the generation and non-destructive characterisation of transverse fractures in long bones

    Get PDF
    Long bone fractures are common and although treatments are highly effective in most cases, it is challenging to achieve successful repair for groups such as open and periprosthetic fractures. Previous biomechanical studies of fracture repair, including computer and experimental models, have simplified the fracture with a flat geometry or a gap, and there is a need for a more accurate fracture representation to mimic the situation in-vivo. The aims of this study were to develop a methodology for generating repeatable transverse fractures in long bones in-vitro and to characterise the fracture surface using non-invasive computer tomography (CT) methods. Ten porcine femora were fractured in a custom-built rig under high-rate loading conditions to generate consistent transverse fractures (angle to femoral axis < 30 degrees). The bones were imaged using high resolution peripheral quantitative CT (HR-pQCT). A method was developed to extract the roughness and form profiles of the fracture surface from the image data using custom code and Guassian filters. The method was tested and validated using artificially generated waveforms. The results revealed that the smoothing algorithm used in the script was robust but the optimum kernel size has to be considered

    Annulus fibrosus functional extrafibrillar and fibrous mechanical behaviour: experimental and computational characterisation

    Get PDF
    The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions (n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour (n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20–25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens

    Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges

    No full text
    The knee joint is a complex mechanical system, and computational modelling can provide vital information for the prediction of disease progression and of the potential for therapeutic interventions. This review provides an overview of the challenges involved in developing finite element models of the tibiofemoral joint, including the representation of appropriate geometry and material properties, loads and motions, and establishing pertinent outputs. The importance of validation for computational models in biomechanics has been highlighted by a number of papers, and finite element models of the tibiofemoral joint are a particular area in which validation can be challenging, due to the complex nature of the knee joint, its geometry and its constituent tissue properties. A variety of study designs have emerged to tackle these challenges, and these can be categorised into several different types. The role of validation, and the strategies adopted by these different study types, are discussed. Models representing trends and sensitivities often utilise generic representations of the knee and provide conclusions with relevance to general populations, usually without explicit validation. Models representing in vitro specimens or in vivo subjects can, to varying extents, be more explicitly validated, and their conclusions are more subject-specific. The potential for these approaches to examine the effects of patient variation is explored, which could lead to future applications in defining how treatments may be stratified for subgroups of patients

    An In Vitro Study of the Intervertebral Disc Structure Using 3 T Magnetic Resonance Imaging

    Get PDF
    Study Design. An in vitro magnetic resonance imaging (MRI) study. Objective. Investigate the potential of high-field MRI for producing higher quality images of the intervertebral disc (IVD) to better distinguish structural details. Summary of Background Data. Higher spatial and contrast resolution are important advantages when imaging the complex tissue structures in the spine such as the IVDs. However, at present it is challenging to capture the substructural details in the IVD such as the lamellae. Methods. Three MRI sequences; two-dimensional proton-density-weighted Turbo-Spin-Echo (PD-TSE), 2D T2-weighted Turbo-Spin-Echo (T2W-TSE) with fat-saturation (FS), and 3D Spoiled-Gradient-Echo (3D-GE), were modified based on the image quality and scan duration. IVDs of three intact cadaveric lumbar-spines (T12–S1, Age 83–94 yr) were imaged using these optimized sequences. Thereafter each IVD was transversely sectioned and the exposed surfaces were photographed. Landmark observations from corresponding MRI slices and photographs were compared to confirm the MRI captured morphology. The image quality was evaluated using signal-to-noise ratio (SNR), and relative-contrast values. Finally, the underlying tissue structures, including specific pathological features, were qualitatively compared between the MR images and photographs. Results. Observations from photographs and corresponding MRI slices matched well. The PD-TSE sequence had better overall SNR, but the relative contrast between the tissue types was relatively poor. The 3D-GE sequence had higher relative contrast between the IVD and bone, but not between annulus and nucleus regions. The T2W images provided the best relative contrast between the annulus and nucleus, however the standard deviations here were high. Structural details including fissures, vascular and granular tissue proliferation, and pathologies in the endplate region, were identifiable from the MR images obtained using the optimized sequences. Conclusion. The results demonstrate the potential of high-field MRI to capture the IVD structural details. Since the acquisition durations were within clinically acceptable levels, these methodological improvements have the potential to enhance clinical diagnostics
    corecore