126 research outputs found

    Intergalactic Gas in Groups of Galaxies: Implications for Dwarf Spheroidal Formation and The Missing Baryons Problem

    Get PDF
    Radio galaxies with bent jets are predominantly located in groups and clusters of galaxies. We use bent-double radio sources, under the assumption that their jets are bent by ram-pressure, to probe intragroup medium (IGM) gas densities in galaxy groups. This method provides a direct measurement of the intergalactic gas density and allows us to probe IGM gas at large radii and in systems whose IGM is too cool to be detected by the current generation of X-ray telescopes. We find gas with densities of 10^(-3)-10^(-4) per cubic centimeter at group radii from 15-700 kpc. A rough estimate of the total baryonic mass in intergalactic gas is consistent with the missing baryons being located in the IGM of galaxy groups. The neutral gas will be easily stripped from dwarf galaxies with total masses of 10^6-10^7 solar masses in the groups studied here. Indications are that IGM gas densities in less-massive systems like the Local Group should be high enough to strip gas from dwarfs like Leo T and, in combination with tides, produce dwarf spheroidals.Comment: 9 pages, 7 figures, accepted for publication in Ap

    Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    Full text link
    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar, and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyrs, the time that it takes for the disk to be re-centered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the HI center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.Comment: 12 pages, 8 figures, corrected for referee comment

    Bent-Double Radio Sources as Probes of Intergalactic Gas

    Full text link
    As the most common environment in the universe, groups of galaxies are likely to contain a significant fraction of the missing baryons in the form of intergalactic gas. The density of this gas is an important factor in whether ram pressure stripping and strangulation affect the evolution of galaxies in these systems. We present a method for measuring the density of intergalactic gas using bent-double radio sources that is independent of temperature, making it complementary to current absorption line measurements. We use this method to probe intergalactic gas in two different environments: inside a small group of galaxies as well as outside of a larger group at a 2 Mpc radius and measure total gas densities of 4±1−2+6×10−34 \pm 1_{-2}^{+6} \times 10^{-3} and 9±3−5+10×10−49 \pm 3_{-5}^{+10} \times 10^{-4} per cubic centimeter (random and systematic errors) respectively. We use X-ray data to place an upper limit of 2×1062 \times 10^6 K on the temperature of the intragroup gas in the small group.Comment: 6 pages, 1 figure, accepted for publication in Ap

    Proper Motions in the Andromeda Subgroup

    Full text link
    This article presents results of VLBI observations of regions of H2O maser activity in the Local Group galaxies M33 and IC10. Since all position measurements were made relative to extragalactic background sources, the proper motions of the two galaxies could be measured. For M33, this provides this galaxy's three dimensional velocity, showing that this galaxy is moving with a velocity of 190 +/- 59 km\s relative to the Milky Way. For IC10, we obtain a motion of 215 +/- 42 km/s relative to the Milky Way. These measurements promise a new handle on dynamical models for the Local Group and the mass and dark matter halo of Andromeda and the Milky Way.Comment: 4 pages 1 figures, to appear in the proceedings of "Galaxies in the Local Volume", Astrophysics and Space Science, editors B. Koribalski and H. Jerjen also available at http://www.mpifr-bonn.mpg.de/staff/abrunthaler/pub.shtm

    Structure and Star Formation in NGC 925

    Get PDF
    We present the results from an optical study of the stellar & star formation properties of NGC 925 using the WIYN 3.5m telescope. Images in B,V,R, & H-alpha reveal a galaxy that is fraught with asymmetries. From isophote fits we discover that the bar center is not coincident with the center of the outer isophotes nor with the dynamical center (from Pisano et al. 1998). Cuts across the spiral arms reveal that the northern arms are distinctly different from the southern arm. The southern arm not only appears more coherent, but the peaks in stellar and H-alpha emission are found to be coincident with those of the HI distribution, while no such consistency is present in the northern disk. We also examine the gas surface density criterion for massive star formation in NGC 925, and find that its behavior is more consistent with that for irregular galaxies, than with late-type spirals. In particular, star formation persists beyond the radius at which the gas surface density falls below the predicted critical value for star formation for late-type spirals. Such properties are characteristic of Magellanic spirals, but are present at a less dramatic level in NGC 925, a late-type spiral.Comment: accepted for publication in the August 2000 Astronomical Journal 12 pages, 3 tables, 14 figure

    A High-Resolution Study of the HI Content of Local Group Dwarf Irregular Galaxy WLM

    Get PDF
    Dwarf irregular galaxies are unique laboratories for studying the interaction between stars and the interstellar medium in low mass environments. We present the highest spatial resolution observations to date of the neutral hydrogen content of the Local Group dwarf irregular galaxy WLM. We find that WLM's neutral hydrogen distribution is typical for a galaxy of its type and size and derive an HI mass of 6.3e7 Msun for WLM. In addition, we derive an HI extent for WLM of 30 arcmin, which is much less than the 45 arcmin extent found by Huchtmeier, Seiradakis, and Materne (1981). We show that the broken ring of high column density neutral hydrogen surrounding the center of WLM is likely the result of star formation propagating out from the center of the galaxy. The young stars and Ha emission in this galaxy are mostly correlated with the high column density neutral hydrogen. The gap in the central ring is the result of star formation in that region using up, blowing out, or ionizing all of the neutral hydrogen. Like many late-type galaxies, WLM's velocity field is asymmetric with the approaching (northern) side appearing to be warped and a steeper velocity gradient for the approaching side than for the receding side in the inner region of the galaxy. We derive a dynamical mass for WLM of 2.16e9 Msun.Comment: 38 pages, 15 figures, 5 tables, accepted by AJ, high resolution version at http://www.astro.wisc.edu/~kepley/kepley_wlm.p

    VII Zw 403: H I structure in a blue compact dwarf galaxy

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyWe present optical (UBVJ), ultraviolet (FUV, NUV), and high-resolution atomic hydrogen (H I) observations of the nearby blue compact dwarf (BCD), VII Zw 403. We find that VII Zw 403 has a relatively high H I mass-to-light ratio for a BCD. The rotation velocity is nominally 10-15 km s(-1), but rises to similar to 20 km s(-1) after correction for the similar to 8-10 km s(-1) random motions present in the gas. The velocity field is complex, including a variation in the position angle of the major axis going from the northeast to the southwest parts of the galaxy. Our high-resolution Hi maps reveal structure in the central gas, including a large, low-density Hi depression or hole between the southern and northern halves of the galaxy, coincident with an unresolved X-ray source. Although interactions have been proposed as the triggering mechanism for the vigorous star formation occurring in BCDs, VII Zw 403 does not seem to have been tidally triggered by an external interaction, as we have found no nearby possible perturbers. It also does not appear to fall in the set of galaxies that exhibit a strong central mass density concentration, as its optical scale length is large in comparison to similar systems. However, there are some features that are compatible with an accretion event: optical/Hi axis misalignment, a change in position angle of the kinematic axis, and a complex velocity field.Peer reviewe
    • …
    corecore