10 research outputs found

    Calculating Basal Thermal Zones Beneath the Antarctic Ice Sheet

    Get PDF
    A procedure is presented for using a simple flowline model to calculate the fraction of the bed that is thawed beneath present-day ice sheets, and therefore for mapping thawed, frozen, melting and freezing basal thermal zones. The procedure is based on the proposition, easily demonstrated, that variations in surface slope along ice flowlines are due primarily to variations in bed topography and ice-bed coupling, where ice-bed coupling for sheet flow is represented by the basal thawed fraction. This procedure is then applied to the central flowlines of flow bands on the Antarctic ice sheet where accumulation rates, surface elevations and bed topography are mapped with sufficient accuracy, and where sheet flow rather than stream flow prevails. In East Antarctica, the usual condition is a low thawed fraction in subglacial highlands, but a high thawed fraction in subglacial basins and where ice converges on ice streams. This is consistent with a greater depression of the basal melting temperature and a slower rate of conducting basal heat to the surface where ice is thick, and greater basal frictional heat production where ice flow is fast, as expected for steady-state flow. This correlation is reduced or even reversed where steady-state flow has been disrupted recently, notably where ice-stream surges produced the Dibble and Dalton Iceberg Tongues, both of which are now stagnating. In West Antarctica, for ice draining into the Pine Island Bay polynya of the Amundsen Sea, the basal thawed fraction is consistent with a prolonged and ongoing surge of Pine Island Glacier and with a recently initiated surge of Thwaites Glacier. For ice draining into the Ross Ice Shelf, long ice streams extend nearly to the West Antarctic ice divide. Over the rugged bed topography near the ice divide, no correlation consistent with steady-state sheet flow exists between ice thickness and the basal thawed fraction. The bed is wholly thawed beneath ice streams, even where stream flow is slow. This is consistent with ongoing gravitational collapse of ice entering the Ross Sea embayment and with unstable flow in the ice streams

    Expression of GJB2 and GJB6 Is Reduced in a Novel DFNB1 Allele

    Get PDF
    In a large kindred of German descent, we found a novel allele that segregates with deafness when present in trans with the 35delG allele of GJB2. Qualitative polymerase chain reaction–based allele-specific expression assays showed that expression of both GJB2 and GJB6 from the novel allele is dramatically reduced. This is the first evidence of a deafness-associated regulatory mutation of GJB2 and of potential coregulation of GJB2 and GJB6

    Pedigree Structure and Kinship Measurements of a Mid-Michigan Community: A New North American Population Isolate Identified

    Get PDF
    Previous studies identified a cluster of individuals with an autosomal recessive form of deafness that reside in a small region of mid-Michigan. We hypothesized that affected members from this community descend from a defined founder population. Using public records and personal interviews, we constructed a genealogical database that includes the affected individuals and their extended families as descendants of 461 settlers who emigrated from the Eifel region of Germany between 1836 and 1875. The genealogical database represents a 13-generation pedigree that includes 27,747 descendants of these settlers. Among these descendants, 13,784 are presumed living. Many of the extant descendants reside in a 90-square-mile area, and 52% were born to parents who share at least one common ancestor. Among those born to related parents, the median kinship coefficient is 3.7 × 10–3. While the pedigree contains 2,510 founders, 344 of the 461 settlers accounted for 67% of the genome in the extant population. These data suggest that we identified a new population isolate in North America and that, as demonstrated for congenital hearing loss, this rural mid-Michigan community is a new resource to discover heritable factors that contribute to common health-related conditions

    Neogene tectonic and climatic evolution of the Western Ross Sea, Antarctica — Chronology of events from the AND-1B drill hole

    Get PDF
    Stratigraphic drilling from the McMurdo Ice Shelf in the 2006/2007 austral summer recovered a 1284.87 m sedimentary succession from beneath the sea floor. Key age data for the core include magnetic polarity stratigraphy for the entire succession, diatom biostratigraphy for the upper 600 m and 40Ar/39Ar ages for in-situ volcanic deposits as well as reworked volcanic clasts. A vertical seismic profile for the drill hole allows correlation between the drill hole and a regional seismic network and inference of age constraint by correlation with well‐dated regional volcanic events through direct recognition of interlayered volcanic deposits as well as by inference from flexural loading of pre‐existing strata. The combined age model implies relatively rapid (1 m/2–5 ky) accumulation of sediment punctuated by hiatuses, which account for approximately 50% of the record. Three of the longer hiatuses coincide with basin‐wide seismic reflectors and, along with two thick volcanic intervals, they subdivide the succession into seven chronostratigraphic intervals with characteristic facies: 1. The base of the cored succession (1275–1220 mbsf) comprises middle Miocene volcaniclastic sandstone dated at approx 13.5 Ma by several reworked volcanic clasts; 2. A late-Miocene sub-polar orbitally controlled glacial–interglacial succession (1220–760 mbsf) bounded by two unconformities correlated with basin‐wide reflectors associated with early development of the terror rift; 3. A late Miocene volcanigenic succession (760–596 mbsf) terminating with a ~1 my hiatus at 596.35 mbsf which spans the Miocene–Pliocene boundary and is not recognised in regional seismic data; 4. An early Pliocene obliquity-controlled alternating diamictite and diatomite glacial–interglacial succession (590–440 mbsf), separated from; 5. A late Pliocene obliquity-controlled alternating diamictite and diatomite glacial–interglacial succession (440–150 mbsf) by a 750 ky unconformity interpreted to represent a major sequence boundary at other locations; 6. An early Pleistocene interbedded volcanic, diamictite and diatomite succession (150–80 mbsf), and; 7. A late Pleistocene glacigene succession (80–0 mbsf) comprising diamictite dominated sedimentary cycles deposited in a polar environment

    (Table S1) Chronostratigraphic constrains for sediment core AND1-1B

    No full text
    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages (Hays et al., 1976, doi:10.1126/science.194.4270.1121), fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles (Raymo and Huybers, 2008, doi:10.1038/nature06589). Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (~5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming (Solomon et al., 2007). Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ~40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ~3° C warmer than today ( Kim and Crowley, 2000, doi:10.1029/1999PA000459) and atmospheric CO2 concentration was as high as ~400 p.p.m.v. (van der Burgh et al., 1993, doi:10.1126/science.260.5115.1788, Raymo et al., 1996, doi:10.1016/0377-8398(95)00048-8). The evidence is consistent with a new ice-sheet/ice-shelf model (Pollard and DeConto, 2009, doi:10.1038/nature07809) that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt (Huybers, 2006, doi:10.1126/science.1125249) under conditions of elevated CO2
    corecore