6 research outputs found

    Effect of high-temperature exposure on the microstructure and mechanical properties of the Al5Ti5Co35Ni35Fe20 high-entropy alloy

    Get PDF
    Effect of high-temperature exposure on the microstructure and mechanical properties of the Al5Ti5Co35Ni35Fe20 High-Entropy Alloy was studied. High-entropy alloys belong to the group of multi-principal element alloys composed of at least five elements with a concentration between 5 and 35 atomic pct. Despite the multicomponent composition, the goal is to achieve a simple solid solution. The alloy was exposed to a temperature range of 650-900 degrees C for 168 h (7 days), after hot rolling and air-quenching. After hot rolling the investigated alloy was not fully supersaturated. The application of air cooling caused gamma' precipitation, which was uniformly distributed within the microstructure. High-temperature exposure caused the growth of gamma' particles. At 700 degrees C and higher, additional continuous and discontinuous precipitation of gamma' was observed. Finally, the microstructure of the investigated alloy consisted of gamma matrix and three types of gamma' precipitates, i.e. spherical gamma' phases with bimodal distribution within the grains and elongated DP gamma' phases present at the grain boundaries. The highest mechanical properties were obtained after exposure to 650 degrees C, which was caused by gamma' precipitation. Further increase in temperature decreased the mechanical properties.Web of Science9155955

    Fine-tuning of mechanical properties in a Zn–Ag–Mg alloy via cold plastic deformation process and post-deformation annealing

    No full text
    In recent years, Zn-based materials have been extensively investigated as potential candidates for biodegradable implant applications. The introduction of alloying elements providing solid-solution strengthening and second phase strengthening seems crucial to provide a suitable platform for the thermo-mechanical strengthening of Zn alloys. In this study, a systematic investigation of the microstructure, crystallographic texture, phase composition, and mechanical properties of a Zn–3Ag-0.5Mg (wt%) alloy processed through combined hot extrusion (HE) and cold rolling (CR), followed by short-time heat treatment (CR + HT) at 200 °C was conducted. Besides, the influence of different annealing temperatures on the microstructure and mechanical properties was studied. An adequate combination of processing conditions during CR and HT successfully addressed brittleness obtained in the high-strength HE Zn–3Ag-0.5Mg alloy. By controlling the microstructure, the most promising results were obtained in the sample subjected to 50% CR reduction and 5-min annealing, which were: ultimate tensile strength of 432 MPa, yield strength of 385 MPa, total elongation to failure of 34%, and Vickers microhardness of 125 HV0.3. The obtained properties clearly exceed the mechanical benchmarks for biodegradable implant materials. Based on the conducted investigation, brittle multi-phase Zn alloys' mechanical performance can be substantially enhanced to provide sufficient plasticity by grain refinement through cold deformation process, followed by short-time annealing to restore proper strength
    corecore