15 research outputs found

    Comparison of community-onset Staphylococcus argenteus and Staphylococcus aureus sepsis in Thailand: a prospective multicentre observational study.

    Get PDF
    Staphylococcus argenteus is a globally distributed cause of human infection, but diagnostic laboratories misidentify this as Staphylococcus aureus. We determined whether there is clinical utility in distinguishing between the two. A prospective cohort study of community-onset invasive staphylococcal sepsis was conducted in adults at four hospitals in northeast Thailand between 2010 and 2013. Of 311 patients analysed, 58 (19%) were infected with S. argenteus and 253 (81%) with S. aureus. Most S. argenteus (54/58) were multilocus sequence type 2250. Infection with S. argenteus was more common in males, but rates of bacteraemia and drainage procedures were similar in the two groups. S. argenteus precipitated significantly less respiratory failure than S. aureus (5.2% versus 20.2%, adjusted OR 0.21, 95% CI 0.06-0.74, p 0.015), with a similar but non-significant trend for shock (6.9% versus 12.3%, adjusted OR 0.46, 95% CI 0.15-1.44, p 0.18). This did not translate into a difference in death at 28 days (6.9% versus 8.7%, adjusted OR 0.80, 95% CI 0.24-2.65, p 0.72). S. argenteus was more susceptible to antimicrobial drugs compared with S. aureus, and contained fewer toxin genes although pvl was detected in 16% (9/58). We conclude that clinical differences exist in association with sepsis due to S. argenteus versus S. aureus

    TLR4 genetic variation is associated with inflammatory responses in Gram-positive sepsis.

    Get PDF
    OBJECTIVES: To identify important pathogen recognition receptor (PRR) pathways regulating innate immune responses and outcome in Staphylococcus aureus sepsis. METHODS: We analysed whether candidate PRR pathway genetic variants were associated with killed S. aureus-induced cytokine responses ex vivo and performed follow-up in vitro studies. We tested the association of our top-ranked variant with cytokine responses and clinical outcomes in a prospective multicentre cohort of patients with staphylococcal sepsis. RESULTS: An intronic TLR4 polymorphism and expression quantitative trait locus, rs1927907, was highly associated with cytokine release induced by stimulation of blood from healthy Thai subjects with S. aureus ex vivo. S. aureus did not induce TLR4-dependent NF-κB activation in transfected HEK293 cells. In monocytes, tumor necrosis factor (TNF)-α release induced by S. aureus was not blunted by a TLR4/MD-2 neutralizing antibody, but in a monocyte cell line, TNF-α was reduced by knockdown of TLR4. In Thai patients with staphylococcal sepsis, rs1927907 was associated with higher interleukin (IL)-6 and IL-8 levels as well as with respiratory failure. S. aureus-induced responses in blood were most highly correlated with responses to Gram-negative stimulants whole blood. CONCLUSIONS: A genetic variant in TLR4 is associated with cytokine responses to S. aureus ex vivo and plasma cytokine levels and respiratory failure in staphylococcal sepsis. While S. aureus does not express lipopolysaccharide or activate TLR4 directly, the innate immune response to S. aureus does appear to be modulated by TLR4 and shares significant commonality with that induced by Gram-negative pathogens and lipopolysaccharide

    Erratum to: Burkholderia pseudomallei induces IL-23 production in primary human monocytes.

    No full text
    The original version of this article unfortunately contained a mistake. The labelling of Fig. 1 was incorrect

    Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants

    No full text
    Burkholderia pseudomallei is a gram-negative bacillus that is the causative agent of melioidosis. We evaluated host-pathogen interaction at different levels using three separate B. pseudomallei mutants generated by insertional inactivation. One of these mutants is defective in the production of the polysaccharide side chains associated with lipopolysaccharide; one does not produce the capsular polysaccharide with the structure -3)-2-O-acetyl-6-deoxy-β-d-manno-heptopyranose-(1-; and the third mutant does not produce flagellin. We compared the in vivo virulence in BALB/c mice, the in vitro fate of intracellular survival inside human polymorphonuclear cells (PMNs) and macrophages (Mφs) and the susceptibility to killing by 30% normal human serum, reactive nitrogen and oxygen intermediates and antimicrobial peptides with that of their wild-type counterpart. The lipopolysaccharide and capsule mutants demonstrated a marked reduction in virulence for BALB/c mice, but the flagellin mutant was only slightly less virulent than the parent strain. The results from the BALB/c mice experiments correlated with survival in Mφs. The lipopolysaccharide and capsule mutants were also more susceptible to killing by antimicrobial agents. All bacteria were equally susceptible to killing by PMNs. Altogether, the data suggest that lipopolysaccharide and capsule and, to a much lesser extent, flagella, are most likely associated with the virulence of this bacterium and highlight the importance of intracellular killing by PMNs and Mφs in disease pathogenesis

    Fate of a Burkholderia pseudomallei Lipopolysaccharide Mutant in the Mouse Macrophage Cell Line RAW 264.7: Possible Role for the O-Antigenic Polysaccharide Moiety of Lipopolysaccharide in Internalization and Intracellular Survival▿

    No full text
    Burkholderia pseudomallei is a facultative intracellular gram-negative bacterium that can survive and multiply inside macrophages. One of the mechanisms by which B. pseudomallei escapes macrophage killing is by interfering with the expression of inducible nitric oxide synthase (iNOS). However, the bacterial components that modulate antimicrobial activity of the macrophage have not been fully elucidated. In the present study, we demonstrated that B. pseudomallei strain SRM117, a lipopolysaccharide (LPS) mutant that lacks the O-antigenic polysaccharide moiety, was more susceptible to macrophage killing during the early phase of infection than the parental wild-type strain (1026b). Unlike the wild type, the LPS mutant could readily stimulate Y701-STAT-1 phosphorylation (pY701-STAT-1) and interferon-regulatory factor 1 (IRF-1) expression, both of which are essential transcription factors of iNOS. Neutralizing antibody against beta interferon was able to inhibit the phosphorylation of Y701-STAT-1 and the expression of IRF-1 and iNOS, all of which resulted in an increased rate of intracellular replication. These data suggest that the O-antigenic polysaccharide moiety of B. pseudomallei modulates the host cell response, which in turn controls the intracellular fate of B. pseudomallei inside macrophages
    corecore