3 research outputs found

    Etude de la réorganisation macroscopique de la peau de souris lors d'une sollicitation bi-axiale

    Get PDF
    La peau est composée en majorité de collagène et présente une microstructure très hiérarchisée qui influe sur son comportement mécanique aux différentes échelles. Pour caractériser l'influence de la microstructure sur les propriétés mécaniques, un test de traction bi-axiale couplé à une mesure macroscopique (corrélation d'images numériques) et microscopique (génération de second harmonique) a été développé . A terme, ce travail permettra de corréler les propriétés macroscopiques à la microstructures. Cette étude présente les résultats de la mesure effectuée par corrélation d'images

    Mécanique multi-échelle des tissus mous

    No full text
    Fibre networks are ubiquitous structures in biological tissues, both at the macroscopic level being the main ingredient in soft tissues and at the microscopic level, as constituents of collagen structures or the cytoskeleton. The goal of this work is to propose a model based on the physical microstructure of fibre networks in order to provide an understanding of the mechanical behaviour of biological fibre networks. The current model starts from fibres sliding with respect to one another and interacting via spring-like cross-bridges. These cross-bridges can attach and detach stochastically with a load-dependent detachment rate. Compared to existing modelling approaches, this work features a dynamic sliding configuration for the interacting fibres and discrete binding sites which permit attachment on localised spaces of the fibre. The detachment of cross-bridges is based on thermal diffusion out of an energy well, following the Kramers rate theory. This theory provides a physical background to the detachment dynamics as well as a natural load dependency in the tilting of the energy landscape by the load force. The model provides two modes by which the depicted system may be driven: an imposed velocity driving, called a hard device and an imposed load driving, called a soft device. The work also provides a way of visualising the behaviour of the model by performing a stochastic simulation. The simulations provided present two algorithms, each tailored to represent the driving of the system, whether in hard or soft device, respecting the causality in each of the driving mode. Simulation results are explored via data visualisation of simulation output. These visualisation serve as an entry point into parametric investigation of the model behaviour and anchor the interpretation of the results into physical systems. In particular, the influence of binding site spacing, one of the key features of the model, is investigated. We also investigate the effects of complex loading paths (transitory, cyclic, etc.) which can be associated to the physiological loadings fibrous tissues.Les réseaux de fibre sont une structure omniprésente dans les tissus biologiques, aussi bien au niveau macroscopique, où ils sont l'ingrédient principal des tissus mous, qu'au niveau microscopique, en tant que constituants des structures collagèniques ou du cytosquelette. L'objectif de ce travail de thèse est de proposer un modèle basé sur la microstructure physique des réseaux de fibres afin d'obtenir une compréhension du comportement mécanique des réseaux de fibres biologiques. Le modèle est basé sur une description de fibres glissant les unes par rapport aux autres et interagissant via des ponts qui se comportent comme des ressorts. Ces ponts peuvent s'attacher et se détacher de manière stochastique avec un taux de détachement qui dépend de la force subie. Comparé aux modélisations existantes, notre travail met en jeu une configuration en glissement dynamique des fibres, ainsi que des sites d'attachement discrets ne permettant l'attachement qu'à des endroits localisés de la fibre. Le détachement des ponts est basé sur la diffusion thermique hors d'un puit de potentiel suivant la théorie de Kramers. Cette théorie donne un contexte physique à la dynamique du détachement ainsi qu'une dépendance naturelle du détachement au chargement via l'inclinaison du paysage énergétique par la force de chargement. Le modèle donne deux modes de contrôle du système : un contrôle à vitesse imposée, appelé système dur, et un contrôle à force imposée, appelé système mou. Notre travail permet également de visualiser le comportement du système à travers une simulation stochastique. Les simulations offrent deux algorithmes, chacun adapté à la méthode de contrôle du système, en système dur ou mou et respectant la causalité dans chacun des modes. Les résultats de la simulation sont explorés via la visualisation des données sortantes de la simulation, qui servent de support pour l'investigation paramétrique du comportement du modèle et ancrent l'interprétation physique des résultats. En particulier, l'influence de l'espacement des sites d'attachement du système, un point caractéristique du modèle, est examiné. De même, nous explorons l'effet de chargements complexes (transitoires, cycliques, etc.) qui représentent les chargements physiologiques des tissus fibreux

    Improving the experimental protocol for a more accurate identification of a given mechanical behavior in a single assay: application to skin

    Get PDF
    International audienceMechanical properties of the skin, the external organ of the human body, are important for many applications such as surgery or cosmetics. Due to the highly hierarchical structure of the tissue, it is interesting to develop microstructural models which have a better predictability and should reduce the consequences of the sample variability. However, these models generally include a quite large number of mechanical parameters. Therefore, complex assays are required to achieve a proper identification of the microstructural models. We investigated here the best experimental protocol to identify a non-linear, anisotropic, model of skin behavior, namely the Holzapfel's law, using displacement field and force measurements. This was done through a sensitivity analysis of the different parameters. We determined first the 1 optimal assay, which appears to be a biaxial test with an alternated loading: first a stretch in one direction, then in the perpendicular one, and so on. To further improve the quality of the assay, we also determined the optimal geometry. Interestingly, slightly asymmetric geometries are more adequate than symmetric ones, while being easier to realize
    corecore