3,147 research outputs found

    Analyticity of the Scattering Amplitude, Causality and High-Energy Bounds in Quantum Field Theory on Noncommutative Space-Time

    Full text link
    In the framework of quantum field theory (QFT) on noncommutative (NC) space-time with the symmetry group O(1,1)×SO(2)O(1,1)\times SO(2), we prove that the Jost-Lehmann-Dyson representation, based on the causality condition taken in connection with this symmetry, leads to the mere impossibility of drawing any conclusion on the analyticity of the 222\to 2-scattering amplitude in cosΘ\cos\Theta, Θ\Theta being the scattering angle. Discussions on the possible ways of obtaining high-energy bounds analogous to the Froissart-Martin bound on the total cross-section are also presented.Comment: 25 page

    A fundamental approach to the sticking of insect residues to aircraft wings

    Get PDF
    The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained

    On Finite Noncommutativity in Quantum Field Theory

    Full text link
    We consider various modifications of the Weyl-Moyal star-product, in order to obtain a finite range of nonlocality. The basic requirements are to preserve the commutation relations of the coordinates as well as the associativity of the new product. We show that a modification of the differential representation of the Weyl-Moyal star-product by an exponential function of derivatives will not lead to a finite range of nonlocality. We also modify the integral kernel of the star-product introducing a Gaussian damping, but find a nonassociative product which remains infinitely nonlocal. We are therefore led to propose that the Weyl-Moyal product should be modified by a cutoff like function, in order to remove the infinite nonlocality of the product. We provide such a product, but it appears that one has to abandon the possibility of analytic calculation with the new product.Comment: 13 pages, reference adde

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    Previous work showed that the total number of insects sticking to an aluminum surface was reduced by coating the aluminum surface with elastomers. Due to a large number of possible experimental errors, no correlation between the modulus of elasticity, the elastomer, and the total number of insects sticking to a given elastomer was obtained. One of the errors assumed to be introduced during the road test is a variable insect flux so the number of insects striking one surface might be different from that striking another sample. To eliminate this source of error, the road test used to collect insects was simulated in a laboratory by development of an insect impacting technique using a pipe and high pressure compressed air. The insects are accelerated by a compressed air gun to high velocities and are then impacted with a stationary target on which the sample is mounted. The velocity of an object exiting from the pipe was determined and further improvement of the technique was achieved to obtain a uniform air velocity distribution

    A fundamental approach to the sticking of insect residues to aircraft wings

    Get PDF
    A proposed testing scheme is described for obtaining data on the effects of surface roughness and surface energy on insect adhesion. The road test apparatus is discussed as well as surface preparation techniques. Uncoated and polymer coated metal substrates were analyzed by SEM/ESCA/IRS before and following collision with insects. Critical surface tensions of unexposed Nyebar and poly sulfone coatings were 10 and 33 dynes/cm, respectively, as determined from contact angles. A total of 95% of insect residues collected belong to order Diptera. Significantly less insect debris was detected on the coated plates as compared to the uncoated plates. Minimal contamination at the 5 nm level of both coated and uncoated plates occurs even after hours of exposure to road conditions as determined by ESCA analysis. The presence of nitrogen detected by ESCA on exposed plates is unequivocal evidence for insect residues left on plates

    Relativistic Operator Description of Photon Polarization

    Full text link
    We present an operator approach to the description of photon polarization, based on Wigner's concept of elementary relativistic systems. The theory of unitary representations of the Poincare group, and of parity, are exploited to construct spinlike operators acting on the polarization states of a photon at each fixed energy momentum. The nontrivial topological features of these representations relevant for massless particles, and the departures from the treatment of massive finite spin representations, are highlighted and addressed.Comment: Revtex 9 page

    Temperature-dependent differences between readily releasable and reserve pool vesicles in chromaffin cells

    Get PDF
    AbstractStatistical differences between amperometric traces recorded from chromaffin cells using K+ and Ba2+ secretagogues support the assertion that readily releasable pool (RRP) and reserve pool (RP) vesicles can be probed with pool-specific secretagogues. Release from the RRP was evoked by K+ while release from the RP was evoked by Ba2+. Similar temperature-dependent changes in spike area and half-width for both pools suggest that the content of RRP and RP vesicles is similar and packaged in the same way. Differences between the vesicle pools were revealed in the temperature dependence of spike frequency. While the burst spike frequency of the RRP, which is comprised of pre-docked and primed vesicles, increased 2.8% per °C, the RP spike frequency increased 12% per °C. This difference is attributed to a temperature-dependent mobilization of the RP. Furthermore, the RP exhibited more foot events at room temperature than the RRP but this difference was not apparent at 37 °C. This trend suggests that RP vesicle membranes have a compromised surface tension compared to RRP vesicles. Collectively, the changes of release characteristics with temperature reveal distinctions between the RRP and the RP

    Conformally invariant wave-equations and massless fields in de Sitter spacetime

    Full text link
    Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in the present paper. Solutions of their wave equations and the related two-point functions, in the ambient space notation, have been calculated. The ``Hilbert'' space structure and the field operator, in terms of coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based on the analyticity in the complexified pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits of these functions are analyzed. The relation between the ambient space notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde
    corecore