38 research outputs found

    Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology

    Get PDF
    Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres

    Impact of Host Telomere Length on HHV-6 Integration

    Get PDF
    Human herpesvirus 6A and 6B are two closely related viruses that infect almost all humans. In contrast to most herpesviruses, HHV-6A/B can integrate their genomes into the telomeres during the infection process. Both viruses can also integrate in germ cells and subsequently be inherited in children. How HHV-6A/B integrate into host telomeres and the consequences of this remain a subject of active research. Here, we developed a method to measure telomere length by quantitative fluorescence in situ hybridization, confocal microscopy, and computational processing. This method was validated using a panel of HeLa cells having short or long telomeres. These cell lines were infected with HHV-6A, revealing that the virus could efficiently integrate into telomeres independent of their length. Furthermore, we assessed the telomere lengths after HHV-6A integration and found that the virus-containing telomeres display a variety of lengths, suggesting that either telomere length is restored after integration or telomeres are not shortened by integration. Our results highlight new aspects of HHV-6A/B biology and the role of telomere length on virus integration

    Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency

    Get PDF
    Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.Peer Reviewe

    The gammaretroviral p12 protein has multiple domains that function during the early stages of replication.

    Get PDF
    BACKGROUND: The Moloney murine leukaemia virus (Mo-MLV) gag gene encodes three main structural proteins, matrix, capsid and nucleocapsid and a protein called p12. In addition to its role during the late stages of infection, p12 has an essential, but undefined, function during early post-entry events. As these stages of retroviral infection remain poorly understood, we set out to investigate the function of p12. RESULTS: Examination of the infectivity of Mo-MLV virus-like particles containing a mixture of wild type and mutant p12 revealed that the N- and C-terminal regions of p12 are sequentially acting domains, both required for p12 function, and that the N-terminal activity precedes the C-terminal activity in the viral life cycle. By creating a panel of p12 mutants in other gammaretroviruses, we showed that these domains are conserved in this retroviral genus. We also undertook a detailed mutational analysis of each domain, identifying residues essential for function. These data show that different regions of the N-terminal domain are necessary for infectivity in different gammaretroviruses, in stark contrast to the C-terminal domain where the same region is essential for all viruses. Moreover, chimeras between the p12 proteins of Mo-MLV and gibbon ape leukaemia virus revealed that the C-terminal domains are interchangeable whereas the N-terminal domains are not. Finally, we identified potential functions for each domain. We observed that particles with defects in the N-terminus of p12 were unable to abrogate restriction factors, implying that their cores were impaired. We further showed that defects in the C-terminal domain of p12 could be overcome by introducing a chromatin binding motif into the protein. CONCLUSIONS: Based on these data, we propose a model for p12 function where the N-terminus of p12 interacts with, and stabilizes, the viral core, allowing the C-terminus of p12 to tether the preintegration complex to host chromatin during mitosis, facilitating integration

    Visualization of Marek’s Disease Virus Genomes in Living Cells during Lytic Replication and Latency

    Get PDF
    Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marek’s disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses

    Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A

    Get PDF
    Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome

    Multivalent bacteria binding by flexible polycationic microsheets matching their surface charge density

    Get PDF
    Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer‐modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram‐negative and ‐positive bacteria (E. coli and methicillin‐resistant Staphylococcus aureus , MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies

    Unbiased optical mapping of telomere-integrated endogenous human herpesvirus 6

    Get PDF
    Next-generation sequencing technologies allowed sequencing of thousands of genomes. However, there are genomic regions that remain difficult to characterize, including telomeres, centromeres, and other low-complexity regions, as well as transposable elements and endogenous viruses. Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) are closely related viruses that infect most humans and can integrate their genomes into the telomeres of infected cells. Integration also occurs in germ cells, meaning that the virus can be inherited and result in individuals harboring the virus in every cell of their body. The integrated virus can reactivate and cause disease in humans. While it is well established that the virus resides in the telomere region, the integration locus is poorly defined due to the low sequence complexity (TTAGGG)n of telomeres that cannot be easily resolved through sequencing. We therefore employed genome imaging of the integrated HHV-6A and HHV-6B genomes using whole-genome optical site mapping technology. Using this technology, we identified which chromosome arm harbors the virus genome and obtained a high resolution map of the integration loci of multiple patients. Surprisingly, this revealed long telomere sequences at the virus-subtelomere junction that were previously missed using PCR-based approaches. Contrary to what was previously thought, our technique revealed that the telomere lengths of chromosomes harbor ing the integrated virus genome were comparable to the other chromosomes. Taken together, our data shed light on the genetic structure of the HHV-6A and HHV-6B integration locus, demonstrating the utility of optical mapping for the analysis of genomic regions that are difficult to sequence

    Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa

    Get PDF
    Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, similar to 70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa

    The Role of Marek’s Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle

    Get PDF
    Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and integrates its genome into the telomeres of latently infected cells. MDV encodes two proteins, UL12 and UL29 (ICP8), that are conserved among herpesviruses and could facilitate virus integration. The orthologues of UL12 and UL29 in herpes simplex virus 1 (HSV-1) possess exonuclease and single strand DNA-binding activity, respectively, and facilitate DNA recombination; however, the role of both proteins in the MDV lifecycle remains elusive. To determine if UL12 and/or UL29 are involved in virus replication, we abrogated their expression in the very virulent RB-1B strain. Abrogation of either UL12 or UL29 resulted in a severe impairment of virus replication. We also demonstrated that MDV UL12 can aid in single strand annealing DNA repair, using a well-established reporter cell line. Finally, we assessed the role of UL12 and UL29 in MDV integration and maintenance of the latent virus genome. We could demonstrate that knockdown of UL12 and UL29 does not interfere with the establishment or maintenance of latency. Our data therefore shed light on the role of MDV UL12 and UL29 in MDV replication, DNA repair, and maintenance of the latent virus genome
    corecore