3,153 research outputs found

    Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators

    Full text link
    We study the dynamics of a pair of parametrically-driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical and nanoelectromechanical systems (MEMS & NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Shilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Shilnikov orbits are confirmed numerically

    Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    Get PDF
    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure

    A case study on practical live event sound exposure monitoring

    Get PDF
    The recently launched WHO Global Standard for Safe Listening Venues and Events aims to make listening safer and more enjoyable for audiences around the world. Some key questions remain on how to practically monitor sound exposure as well as on how patronsā€™ hearing may be affected after significant exposure. This paper presents a case study where various sound exposure monitoring systems and methods were trialed in an indoor music venue. The aim of the work was to develop and validate a practical, accurate and repeatable technique to track sound exposure across music venues that can be presented in real-time. Results indicate that this can be achieved with no more than four, and as few as two, sound level monitoring locations alongside fixed calibration measurements and a small number of spot measurements at the mix position during a performance

    Architecting Access Points Using Low-Energy Modalities

    Full text link
    Many security experts would agree that, had it not been for the emulation of replication, the synthesis of 802.11 mesh networks might never have occurred. In our research, we validate the exploration of the producer-consumer problem. DuralQue, our new framework for context-free grammar, is the solution to all of these obstacles

    Fractal templates in the escape dynamics of trapped ultracold atoms

    Full text link
    We consider the dynamic escape of a small packet of ultracold atoms launched from within an optical dipole trap. Based on a theoretical analysis of the underlying nonlinear dynamics, we predict that fractal behavior can be seen in the escape data. This data would be collected by measuring the time-dependent escape rate for packets launched over a range of angles. This fractal pattern is particularly well resolved below the Bose-Einstein transition temperature--a direct result of the extreme phase space localization of the condensate. We predict that several self-similar layers of this novel fractal should be measurable and we explain how this fractal pattern can be predicted and analyzed with recently developed techniques in symbolic dynamics.Comment: 11 pages with 5 figure

    Statistical method for the determination of equivalence of automated test procedures

    Get PDF
    In the development of test methods for solid dosage forms, manual test procedures for assay and content uniformity often precede the development of automated test procedures. Since the mode of extraction for automated test methods is often slightly different from that of the manual test method, additional validation of an automated test method is usually required. In addition to compliance with validation guidelines, developers of automated test methods are often asked to demonstrate equivalence between the manual and automated test methods. There are problems associated with using the traditional zero-difference hypothesis tests (such as the Student's t-test) for demonstrating equivalence. The use of the Westlake Interval and Schuirmann's Two One-sided test as more rigorous methods of demonstrating equivalence is discussed

    Interfacial Structural Changes and Singularities in Non-Planar Geometries

    Full text link
    We consider phase coexistence and criticality in a thin-film Ising magnet with opposing surface fields and non-planar (corrugated) walls. We show that the loss of translational invariance has a strong and unexpected non-linear influence on the interface structure and phase diagram. We identify 4 non-thermodynamic singularities where there is a qualitative change in the interface shape. In addition, we establish that at the finite-size critical point, the singularity in the interface shape is characterized by two distint critical exponents in contrast to the planar case (which is characterised by one). Similar effects should be observed for prewetting at a corrugated substrate. Analogy is made with the behaviour of a non-linear forced oscillator showing chaotic dynamics.Comment: 13 pages, 3 figure

    Tidal Interaction between a Fluid Star and a Kerr Black Hole in Circular Orbit

    Full text link
    We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass mm and radius R0R_0) and a Kerr black hole (mass MM) in circular orbit. We consider the limit Mā‰«mM\gg m where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star-black hole binaries) to be constructed. Tidal disruption occurs at orbital radius rtideāˆ¼R0(M/m)1/3r_{\rm tide}\sim R_0(M/m)^{1/3}, but the dimensionless ratio r^tide=rtide/[R0(M/m)1/3]\hat r_{\rm tide}=r_{\rm tide}/[R_0(M/m)^{1/3}] depends on the spin parameter of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger r^tide\hat r_{\rm tide} than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, r^tide\hat r_{\rm tide} is smaller for a (prograde rotating) Kerr black hole than for a Schwarzschild black hole. We apply our results to coalescing black hole-neutron star and black hole-white dwarf binaries. The tidal disruption limit is important for characterizing the expected gravitational wave signals and is relevant for determining the energetics of gamma ray bursts which may result from such disruption.Comment: 29 pages including 8 figures. Minor changes and update. To appear in ApJ, March 20, 2000 (Vol.532, #1

    Molecular Scale Cure Rate Dependence of Thermoset Matrix Polymers

    Get PDF
    This manuscript demonstrates the molecular scale cure rate dependence of di-functional epoxide based thermoset polymers cured with amines. A series of cure heating ramp rates were used to determine the influence of ramp rate on the glass transition temperature (Tg) and sub-Tg transitions and the average free volume hole size in these systems. The networks were comprised of 3,3ā€²-diaminodiphenyl sulfone (33DDS) and diglycidyl ether of bisphenol F (DGEBF) and were cured at ramp rates ranging from 0.5 to 20 Ā°C/min. Differential scanning calorimetry (DSC) and NIR spectroscopy were used to explore the cure ramp rate dependence of the polymer network growth, whereas broadband dielectric spectroscopy (BDS) and free volume hole size measurements were used to interrogate networksā€™ molecular level structural variations upon curing at variable heating ramp rates. It was found that although the Tg of the polymer matrices was similar, the NIR and DSC measurements revealed a strong correlation for how these networks grow in relation to the cure heating ramp rate. The free volume analysis and BDS results for the cured samples suggest differences in the molecular architecture of the matrix polymers due to cure heating rate dependence
    • ā€¦
    corecore