124 research outputs found

    A seasonal succession of physical/biological interaction mechanisms in the Sargasso Sea

    Get PDF
    Six months of concurrent, co-located physical and bio-optical time series from a moored array deployed in the Sargasso Sea during 1987 have been analyzed by combining standard Fourier analysis techniques with a unique presentation method. The spectral information obtained from the time series analysis covers four orders of magnitude in frequency space. This is especially useful for revealing temporal variations in high frequency variance and the physical/biological interactions that occur at these frequencies. The presentation method used here consists of time/frequency distributions of normalized variance and squared coherence that resulted from the time series analysis. These reveal a seasonal succession of physical/biological interaction mechanisms. It is apparent that the onset, and ongoing development, of water-column stratification initiates an evolution from a regime dominated by horizontal advection, within which phytoplankton act as a passive tracer, to one where physical processes impact the biology on spatial and temporal scales which are consonant with phytoplankton physiology. The observed interactions include: (1) transport of distinct bio-optical properties within advected mesoscale features; (2) significant phytoplankton patchiness associated with the regional evolution of the spring bloom and; (3) high frequency bio-optical variability associated with the interaction of the deep chlorophyll maximum with internal wave motions

    Satellite Evidence of Hurricane-Induced Phytoplankton Blooms in an Oceanic Desert

    Get PDF
    The physical effects of hurricanes include deepening of the mixed layer and decreasing of the sea surface temperature in response to entrainment, curl-induced upwelling, and increased upper ocean cooling. However, the biological effects of hurricanes remain relatively unexplored. In this paper, we examine the passages of 13 hurricanes through the Sargasso Sea region of the North Atlantic during the years 1998 through 2001. Remotely sensed ocean color shows increased concentrations of surface chlorophyll within the cool wakes of the hurricanes, apparently in response to the injection of nutrients and/or biogenic pigments into the oligotrophic surface waters. This increase in post-storm surface chlorophyll concentration usually lasted 2-3 weeks before it returned to its nominal pre-hurricane level

    The Role of Feeding Behavior in Sustaining Copepod Populations in the Tropical Ocean

    Get PDF
    A fundamental question regarding marine copepods is how the many species coexist and persist in the oligotrophic environment (i.e. Hutchinson’s paradox). This question is addressed with a stochastic, object-oriented Lagrangian model that explicitly simulates the distinct foraging behaviors of three prominent tropical species: Clausocalanus furcatus, Paracalanus aculeatus and Oithona plumifera. The model also individually tracks all prey cells. Each particle’s motion combines sinking, turbulent diffusion and active swimming when applicable. The model successfully simulates observed size partitioned carbon uptake rates. Based on the model results, the wide-ranging translational ambit employed by C. furcatus is best suited for the acquisition of passive prey while the relatively stationary behavior of O. plumifera promotes the capture of larger, quickly sinking cells. The model results further suggest that the slow velocities and feeding current employed by P. aculeatus are best suited for acquiring the smallest cells though it also has a slight advantage over C. furcatus in acquiring the largest prey. A resource threshold, at a prey concentration of 530 cells mL–1,is consistently exhibited by all three modeled species. Overall, these results imply that the size-partition preferences due to their different foraging behavior contribute to the coexistence of these three species. (c) The Author 2005

    Leak detection in pipelines using the damping of fluid transients

    Get PDF
    © 2002 American Society of Civil EngineersLeaks in pipelines contribute to damping of transient events. That fact leads to a method of finding location and magnitude of leaks. Because the problem of transient flow in pipes is nearly linear, the solution of the governing equations can be expressed in terms of a Fourier series. All Fourier components are damped uniformly by steady pipe friction, but each component is damped differently in the presence of a leak. Thus, overall leak-induced damping can be divided into two parts. The magnitude of the damping indicates the size of a leak, whereas different damping ratios of the various Fourier components are used to find the location of a leak. This method does not require rigorous determination and modeling of boundary conditions and transient behavior in the pipeline. The technique is successful in detecting, locating, and quantifying a 0.1% size leak with respect to the cross-sectional area of a pipeline.Xiao-Jian Wang, Martin F. Lambert, Angus R. Simpson, James A. Liggett, and John P. Vitkovsk

    Assessment of Skill and Portability in Regional Marine Biogeochemical Models: Role of Multiple Planktonic Groups

    Get PDF
    Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models\u27 performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways

    Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 779-794, doi: 10.5194/bg-6-779-2009Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.This work was supported by grants from the NASA Ocean Biology and Biogeochemistry Program and the NSF Biological Oceanography Program

    Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton

    Get PDF
    Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models

    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)

    Get PDF
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.We thank the following organizations and programs for financial contributions, support and endorsement: the U.S. National Oceanic and Atmospheric Administration; the U.S. Ocean Carbon and Biogeochemistry program funded by the National Science Foundation and the National Aeronautics and Space Administration; the NASA Physical Oceanography Program; Scripps Institution of Oceanography; and the Indo-US Science and Technology Forum

    Systematic evaluation of one-dimensional unsteady friction models in simple pipelines

    Get PDF
    In this paper, basic unsteady flow types and transient event types are categorized, and then unsteady friction models are tested for each type of transient event. One important feature of any unsteady friction model is its ability to correctly model frictional dissipation in unsteady flow conditions under a wide a range of possible transient event types. This is of importance to the simulation of transients in pipe networks or pipelines with various devices in which a complex series of unsteady flow types are common. Two common one-dimensional unsteady friction models are considered, namely, the constant coefficient instantaneous acceleration-based model and the convolution-based model. The modified instantaneous acceleration-based model, although an improvement, is shown to fail for certain transient event types. Additionally, numerical errors arising from the approximate implementation of the instantaneous acceleration-based model are determined, suggesting some previous good fits with experimental data are due to numerical error rather than the unsteady friction model. The convolution-based model is successful for all transient event types. Both approaches are tested against experimental data from a laboratory pipeline.John P. Vítkovský, Anton Bergant, Angus R. Simpson and Martin F. Lamber

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology
    • …
    corecore