15 research outputs found

    Electrochemically Switchable Multimode Strong Coupling in Plasmonic Nanocavities

    Get PDF
    The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling

    Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble

    Full text link
    KohĂ€rente Phononen können die Licht-Materie-Wechselwirkung in Halbleiter Nanostrukturen stark Ă€ndern. Bei einem Ensemble von Quantenpunkten (QP) als aktivem Lasermedium sind Phononen im Stande, die LaserintensitĂ€t deutlich zu verstĂ€rken oder abzuschwĂ€chen. Die Physik des gekoppelten Phonon-Exziton-Licht-Systems wird von verschiedenen Mechanismen dominiert, die im Experiment nicht eindeutig unterschieden werden können, da die komplizierte Probenstruktur zu einem komplexen Verspannungspuls fĂŒhrt, der auf das QP-Ensemble trifft. Hier zeigen wir durch eine umfassende theoretische Studie, wie die Laseremission durch Phononpulse verschiedener Form und QP-Ensembles verschiedener spektraler Verteilung beeinflusst wird. Dies erlaubt einen Einblick in die grundlegenden Wechselspiele des gekoppelten Gesamtsystems. Dadurch können wir zwischen zwei Mechanismen unterschieden: der adiabatischen Verschiebung des Ensembles und dem SchĂŒttel-Effekt. Dies ebnet den Weg zu einer gezielten Kontrolle der Laser Emission durch kohĂ€rente Phononen.Coherent phonons can greatly vary light–matter interaction in semiconductor nanostructures placed inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as active laser medium, phonons are able to induce a large enhancement or attenuation of the emission intensity, as has been recently demonstrated. The physics of this coupled phonon–exciton–light system consists of various effects, which in the experiment typically cannot be clearly separated, in particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by phonon pulses of various shapes as well as by ensembles with different spectral distributions of the QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon–exciton–light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission controlled by phonons.</p

    In search of the authentic nation: landscape and national identity in Canada and Switzerland

    Get PDF
    While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π∓{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Influence of local fields on the dynamics of four-wave mixing signals from 2D semiconductor systems

    Full text link
    In recent years the physics of two-dimensional semiconductors was revived by the discovery of the class of transition metal dichalcogenides. In these systems excitons dominate the optical response in the visible range and open many perspectives for nonlinear spectroscopy. To describe the coherence and polarization dynamics of excitons after ultrafast excitation in these systems, we employ the Bloch equation model of a two-level system extended by a local field describing the exciton–exciton interaction. We calculate four-wave mixing (FWM) signals and analyze the dependence of the temporal and spectral signals as a function of the delay between the exciting pulses. Exact analytical results obtained for the case of ultrafast (ή-shaped) pulses are compared to numerical solutions obtained for finite pulse durations. If two pulses are used to generate the nonlinear signal, characteristic spectral line splittings are restricted to short delays. When considering a three-pulse excitation the line splittings, induced by the local field effect, persist for long delays. All of the found features are instructively explained within the Bloch vector picture and we show how the exciton occupation dynamics govern the different FWM signals

    Controlled Coherent Coupling in a Quantum Dot Molecule Revealed by Ultrafast Four-Wave Mixing Spectroscopy

    No full text
    International audienceSemiconductor quantum dot molecules are considered as promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled inter-dot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modelling on different levels of complexity we give an instructive explanation of the underlying coupling mechanism and dynamical processes
    corecore