6 research outputs found
SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide precision
Many time-consuming analyses of next -: generation sequencing data can be addressed with modern cloud computing. The Apache Hadoop-based solutions have become popular in genomics BECAUSE OF: their scalability in a cloud infrastructure. So far, most of these tools have been used for batch data processing rather than interactive data querying. The SparkSeq software has been created to take advantage of a new MapReduce framework, Apache Spark, for next-generation sequencing data. SparkSeq is a general-purpose, flexible and easily extendable library for genomic cloud computing. It can be used to build genomic analysis pipelines in Scala and run them in an interactive way. SparkSeq opens up the possibility of customized ad hoc secondary analyses and iterative machine learning algorithms. This article demonstrates its scalability and overall fast performance by running the analyses of sequencing datasets. Tests of SparkSeq also prove that the use of cache and HDFS block size can be tuned for the optimal performance on multiple worker node
Benchmarking distributed data warehouse solutions for storing genomic variant information
Genomic-based personalized medicine encompasses storing, analysing and interpreting genomic variants as its central issues. At a time when thousands of patientss sequenced exomes and genomes are becoming available, there is a growing need for efficient database storage and querying. The answer could be the application of modern distributed storage systems and query engines. However, the application of large genomic variant databases to this problem has not been sufficiently far explored so far in the literature. To investigate the effectiveness of modern columnar storage [column-oriented Database Management System (DBMS)] and query engines, we have developed a prototypic genomic variant data warehouse, populated with large generated content of genomic variants and phenotypic data. Next, we have benchmarked performance of a number of combinations of distributed storages and query engines on a set of SQL queries that address biological questions essential for both research and medical applications. In addition, a non-distributed, analytical database (MonetDB) has been used as a baseline. Comparison of query execution times confirms that distributed data warehousing solutions outperform classic relational DBMSs. Moreover, pre-aggregation and further denormalization of data, which reduce the number of distributed join operations, significantly improve query performance by several orders of magnitude. Most of distributed back-ends offer a good performance for complex analytical queries, while the Optimized Row Columnar (ORC) format paired with Presto and Parquet with Spark 2 query engines provide, on average, the lowest execution times. Apache Kudu on the other hand, is the only solution that guarantees a sub-second performance for simple genome range queries returning a small subset of data, where low-latency response is expected, while still offering decent performance for running analytical queries. In summary, research and clinical applications that require the storage and analysis of variants from thousands of samples can benefit from the scalability and performance of distributed data warehouse solutions.ISSN:1758-046
SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide precision
Many time-consuming analyses of next -: generation sequencing data can be addressed with modern cloud computing. The Apache Hadoop-based solutions have become popular in genomics BECAUSE OF: their scalability in a cloud infrastructure. So far, most of these tools have been used for batch data processing rather than interactive data querying. The SparkSeq software has been created to take advantage of a new MapReduce framework, Apache Spark, for next-generation sequencing data. SparkSeq is a general-purpose, flexible and easily extendable library for genomic cloud computing. It can be used to build genomic analysis pipelines in Scala and run them in an interactive way. SparkSeq opens up the possibility of customized ad hoc secondary analyses and iterative machine learning algorithms. This article demonstrates its scalability and overall fast performance by running the analyses of sequencing datasets. Tests of SparkSeq also prove that the use of cache and HDFS block size can be tuned for the optimal performance on multiple worker nodes