38 research outputs found

    Cardiac Deletion of Smyd2 Is Dispensable for Mouse Heart Development

    Get PDF
    Chromatin modifying enzymes play a critical role in cardiac differentiation. Previously, it has been shown that the targeted deletion of the histone methyltransferase, Smyd1, the founding member of the SET and MYND domain containing (Smyd) family, interferes with cardiomyocyte maturation and proper formation of the right heart ventricle. The highly related paralogue, Smyd2 is a histone 3 lysine 4- and lysine 36-specific methyltransferase expressed in heart and brain. Here, we report that Smyd2 is differentially expressed during cardiac development with highest expression in the neonatal heart. To elucidate the functional role of Smyd2 in the heart, we generated conditional knockout (cKO) mice harboring a cardiomyocyte-specific deletion of Smyd2 and performed histological, functional and molecular analyses. Unexpectedly, cardiac deletion of Smyd2 was dispensable for proper morphological and functional development of the murine heart and had no effect on global histone 3 lysine 4 or 36 methylation. However, we provide evidence for a potential role of Smyd2 in the transcriptional regulation of genes associated with translation and reveal that Smyd2, similar to Smyd3, interacts with RNA Polymerase II as well as to the RNA helicase, HELZ

    Inhibition of fatty acid oxidation enables heart regeneration in adult mice

    Get PDF
    Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5. Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts

    Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity

    No full text
    Obesity is an increasing health problem worldwide, and nonsurgical strategies to treat obesity have remained rather inefficient. We here show that acute loss of TGF-beta-activated kinase 1 (TAK1) in adipocytes results in an increased rate of apoptotic adipocyte death and increased numbers of M2 macrophages in white adipose tissue. Mice with adipocyte-specific TAK1 deficiency have reduced adipocyte numbers and are resistant to obesity induced by a high-fat diet or leptin deficiency. In addition, adipocyte-specific TAK1-deficient mice under a high-fat diet showed increased energy expenditure, which was accompanied by enhanced expression of the uncoupling protein UCP1. Interestingly, acute induction of adipocyte-specific TAK1 deficiency in mice already under a high-fat diet was able to stop further weight gain and improved glucose tolerance. Thus, loss of TAK1 in adipocytes reduces the total number of adipocytes, increases browning of white adipose tissue, and may be an attractive strategy to treat obesity, obesity-dependent diabetes, and other associated complications

    ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7

    No full text
    Background: ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. Methods: Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. Results: Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NF kappa B (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. Conclusions: Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival
    corecore