44 research outputs found

    Cooperation not competition: Bihemispheric tDCS and fMRI show role for ipsilateral hemisphere in motor learning

    Get PDF
    What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere

    Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Get PDF
    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere

    Two distinct ipsilateral cortical representations for individuated finger movements.

    Get PDF
    Movements of the upper limb are controlled mostly through the contralateral hemisphere. Although overall activity changes in the ipsilateral motor cortex have been reported, their functional significance remains unclear. Using human functional imaging, we analyzed neural finger representations by studying differences in fine-grained activation patterns for single isometric finger presses. We demonstrate that cortical motor areas encode ipsilateral movements in 2 fundamentally different ways. During unimanual ipsilateral finger presses, primary sensory and motor cortices show, underneath global suppression, finger-specific activity patterns that are nearly identical to those elicited by contralateral mirror-symmetric action. This component vanishes when both motor cortices are functionally engaged during bimanual actions. We suggest that the ipsilateral representation present during unimanual presses arises because otherwise functionally idle circuits are driven by input from the opposite hemisphere. A second type of representation becomes evident in caudal premotor and anterior parietal cortices during bimanual actions. In these regions, ipsilateral actions are represented as nonlinear modulation of activity patterns related to contralateral actions, an encoding scheme that may provide the neural substrate for coordinating bimanual movements. We conclude that ipsilateral cortical representations change their informational content and functional role, depending on the behavioral context

    Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning.

    Get PDF
    Complex manual tasks-everything from buttoning up a shirt to playing the piano-fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed synergies ); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable

    Safe Brain Tumor Resection Does not Depend on Surgery Alone - Role of Hemodynamics

    Get PDF
    Aim of this study was to determine if perioperative hemodynamics have an impact on perioperative infarct volume and patients' prognosis. 201 cases with surgery for a newly diagnosed or recurrent glioblastoma were retrospectively analyzed. Clinical data and perioperative hemodynamic parameters, blood tests and time of surgery were recorded. Postoperative infarct volume was quantitatively assessed by semiautomatic segmentation. Mean diastolic blood pressure (dBP) during surgery (rho -0.239, 95% CI -0.11 - -0.367, p = 0.017), liquid balance (rho 0.236, 95% CI 0.1-0.373, p = 0.017) and mean arterial pressure (MAP) during surgery (rho -0.206, 95% CI -0.07 - -0.34, p = 0.041) showed significant correlation to infarct volume. A rank regression model including also age and recurrent surgery as possible confounders revealed mean intraoperative dBP, liquid balance and length of surgery as independent factors for infarct volume. Univariate survival analysis showed mean intraoperative dBP and MAP as significant prognostic factors, length of surgery also remained as significant prognostic factor in a multivariate model. Perioperative close anesthesiologic monitoring of blood pressure and liquid balance is of high significance during brain tumor surgery and should be performed to prevent or minimize perioperative infarctions and to prolong survival

    Retrospective Analysis of Radiological Recurrence Patterns in Glioblastoma, Their Prognostic Value And Association to Postoperative Infarct Volume

    Get PDF
    Recent studies suggested that postoperative hypoxia might trigger invasive tumor growth, resulting in diffuse/multifocal recurrence patterns. Aim of this study was to analyze distinct recurrence patterns and their association to postoperative infarct volume and outcome. 526 consecutive glioblastoma patients were analyzed, of which 129 met our inclusion criteria: initial tumor diagnosis, surgery, postoperative diffusion-weighted imaging and tumor recurrence during follow-up. Distinct patterns of contrast-enhancement at initial diagnosis and at first tumor recurrence (multifocal growth/progression, contact to dura/ventricle, ependymal spread, local/distant recurrence) were recorded by two blinded neuroradiologists. The association of radiological patterns to survival and postoperative infarct volume was analyzed by uni-/multivariate survival analyses and binary logistic regression analysis. With increasing postoperative infarct volume, patients were significantly more likely to develop multifocal recurrence, recurrence with contact to ventricle and contact to dura. Patients with multifocal recurrence (Hazard Ratio (HR) 1.99, P = 0.010) had significantly shorter OS, patients with recurrent tumor with contact to ventricle (HR 1.85, P = 0.036), ependymal spread (HR 2.97, P = 0.004) and distant recurrence (HR 1.75, P = 0.019) significantly shorter post-progression survival in multivariate analyses including well-established prognostic factors like age, Karnofsky Performance Score (KPS), therapy, extent of resection and patterns of primary tumors. Postoperative infarct volume might initiate hypoxia-mediated aggressive tumor growth resulting in multifocal and diffuse recurrence patterns and impaired survival

    ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

    Full text link
    Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (https://doi.org/10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke

    ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset.

    Get PDF
    Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions ( https://doi.org/10.5281/zenodo.7153326 ). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge ( https://www.isles-challenge.org/ ) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke
    corecore