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Cooperation Not Competition: Bihemispheric tDCS and fMRI
Show Role for Ipsilateral Hemisphere in Motor Learning

Sheena Waters,!2* Tobias Wiestler,! and “Jorn Diedrichsen'*
'Institute of Cognitive Neuroscience, ?Institute of Neurology, and 3Sobell Department for Motor Neuroscience and Motor Disorders, University College
London, London WCI 3AR, United Kingdom, and “Brain and Mind Institute, Western University, London, Ontario N6A 5B7, Canada

What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral
motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex
may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-
blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-
group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed
over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemi-
spheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we
found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent
representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training re-
vealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a
cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain
stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere.

Key words: interhemispheric communication; neurostimulation; plasticity

~

Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere
while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial
direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor
learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in
fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained
hand. Collectively, our findings suggest a cooperative rather than a competitive role of the hemispheres and imply that it is most
beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits. j

/Signiﬁcance Statement

and Cohen, 2009; Di Pino et al., 2014). One influential idea is the
“interhemispheric competition” model, according to which the
two hemispheres mutually suppress each other via inhibitory in-
terconnections (Curtis, 1940; Ferbert et al., 1992; Daskalakis et
al., 2002; Chen, 2004; Ni et al., 2009). This notion has shaped
theories about how best to improve motor learning through
brain stimulation. It has been suggested that motor learning may
be facilitated, not only by exciting contralateral motor cortex, but
also by inhibiting ipsilateral cortex, particularly in the context of
stroke rehabilitation (Murase et al., 2004; Hummel and Cohen,
2006; Williams et al., 2010; Takeuchi et al., 2012). tDCS has been
shown to increase motor-evoked potentials (MEPs) when the

Introduction

Even strictly unilateral motor behaviors such as moving one hand
rely on interactions between the cerebral hemispheres. However,
the nature of this interaction is incompletely understood (Perez

Received Nov. 3, 2016; revised April 1, 2017; accepted April 17, 2017.

Author contributions: S.W., T.W., and J.D. designed research; S.W., .W., and J.D. performed research; S.W., T.W.,
and J.D. analyzed data; S.W. and J.D. wrote the paper.

This work was supported by the Wellcome Trust (Grant 094874/Z/10/Zt0).D.), the James McDonnell Foundation
(J.D.), and the Brain Research Trust (Doctoral Studentship 6CHB to S.W.). The Wellcome Trust Centre for Neuroim-
aging is supported by core funding from the Wellcome Trust (Grant 091593/2/10/Z).

The authors declare no competing financial interests.

Correspondence should be addressed to Jorn Diedrichsen, Brain and Mind Institute, Western University, 1151
Richmond St., London, N6A 5B7 Ontario, Canada. E-mail: jdiedric@uwo.ca.

DO0I:10.1523/JNEUR0SCI.3414-16.2017
Copyright © 2017 Waters et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License
Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in
any medium provided that the original work is properly attributed.

anode is placed above primary motor cortex (M1) (Nitsche and
Paulus, 2000) and to decrease MEPs in the presence of a cathode
(Nitsche et al., 2003). Consistent with the interhemispheric com-
petition model, Vines et al. (2008) demonstrated that bihemi-
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Experimental design. a, tDCS montages: sham stimulation (blue); unihemispheric (“Uni”) tDCS (black); bihemispheric (“Bi”) tDCS (red); and RP bihemispheric (“Bi-RP”) tDCS (green).

The location of the anode is indicated by a “+" and the location of the cathode by a “—". Here, the electrode placement for the left-hand-trained group is shown (for which the right hemisphere
was the “trained hemisphere”). For right-hand-trained participants, the electrode location was reversed for all stimulation groups. For purposes of double blinding, 2/3 of the sham group had a
bihemispheric and 1/3 had an unihemispheric montage. b, Procedure. During the pretest, participants performed 12 5-digit sequences with either hand. Subsequently, participants were assigned
to 10r 4tDCS groups and trained for 4 d with either the left or the right hand, resulting in 8 different groups (for details, see Table 1). During the posttest, participants were tested again (as in the
pretest) without tDCS. Finally, all participants with a bihemispheric montage (but not with unihemispheric montage) underwent fMRI scanning on day 7.

spheric tDCS with the cathode located over ipsilateral M1
improves performance more than unihemispheric tDCS.

However, there are reasons to doubt that the bihemispheric ad-
vantage is due to the suppression of ipsilateral cortex. Although
MEPs typically decrease under the cathode after unihemispheric
stimulation (Nitsche et al., 2003), polarity-specific changes are re-
duced after bihemispheric stimulation (O’Shea et al., 2014). There-
fore, increased neural plasticity subsequent to tDCS may not be
closely linked to polarity-specific excitability changes measured with
transcranial magnetic stimulation (TMS). Rather, plasticity in-
creases may be attributable to the electrical current running trans-
versely rather than radially through the cortical tissue (Rahman et al.,
2013). If true, then tDCS effects should depend the spatial current
distribution, not on current direction.

Under this assumption, bihemispheric tDCS may increase plas-
ticity in both motor cortices independently of polarity. In addition,
ipsilateral motor cortex may have an active role in the execution and
learning of complex movements. Recent fMRI (Diedrichsen et al.,
2013; Wiestler and Diedrichsen, 2013) and electrophysiological
(Ganguly et al., 2009) studies have demonstrated that activity in M1,
although often suppressed below baseline, contains information
about ongoing ipsilateral movements. This activity could contribute
to movement control either through directly descending ipsilateral
projections or by shaping activation patterns on the contralateral
side (Verstynen et al., 2005). According to this “interhemispheric
cooperation” model, bihemispheric tDCS is more effective than uni-
hemispheric stimulation, not because it silences ipsilateral cortex,
but because it increases ipsilateral plasticity.

To adjudicate between these explanations, we tested the ef-
fects of reversing the polarity of bihemispheric stimulation. We

trained 64 participants in a double-blind study using sham, uni-
hemispheric, conventional bihemispheric, or reversed-polarity
(RP) bihemispheric tDCS (Fig. 1a). Participants performed an
unimanual sequence task with either the left or right hand over
4 d (Fig. 1b). After training and a behavioral posttest without
tDCS, participants underwent fMRI to elucidate the neural
changes induced by stimulation.

The interhemispheric competition model (assuming polarity-
specific tDCS effects; see Table 1 for other assumptions) predicts
that RP bihemispheric tDCS should impair performance com-
pared with the sham group. Not only should contralateral cath-
odal stimulation suppress the motor areas involved in learning,
but ipsilateral anodal stimulation should further increase inter-
hemispheric inhibition. fMRI should reveal opposite changes in
the hemisphere that received anodal and cathodal stimulation.

In contrast, the interhemispheric cooperation model (assum-
ing polarity-unspecific tDCS effects) predicts that plasticity is
induced regardless of current direction and that the behavioral
advantage arises from plasticity in both hemispheres. Therefore,
RP tDCS should be as effective as conventional bihemispheric
tDCS and both should be more effective than the unihemispheric
montage. Given the bilateral nature of the predicted plastic changes,
the tDCS-related advantages should generalize to the untrained
hand. Finally, bihemispheric tDCS should lead to activity changes in
both hemispheres in a polarity-unspecific manner.

Materials and Methods

Participants. Sixty-four healthy, right-handed subjects (54.69% females;
average age 22.84 * 0.56 years) participated in this study. Participants
completed the Edinburgh Handedness Inventory (Oldfield, 1971), as
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Table 1. Experimental prediction of hemispheric competition and cooperation models assuming either polarity specific or polarity unspecific effects

Hemispheric competition model Hemispheric cooperation model

Polarity-specific: anodal increases, cathodal
decreases plasticity

Polarity-unspecific: both anodal and cathodal
increase plasticity

Bihemispheric << unihemispheric << sham << bihemispheric-RP Unihemispheric << bihemispheric = bihemispheric-RP = sham

Unihemispheric << bihemispheric = bihemispheric-RP << sham Bihemispheric = bihemispheric-RP << unihemispheric << sham

Conditions are listed in order of predicted behavioral performance (<< means lower movement time, i.e. better performance). Predictions for the hemispheric competition model assuming polarity-specific effects on plasticity and for the
hemispheric cooperation model assuming polarity-unspecific effects are presented in the Introduction. Under the hemispheric competition model with polarity-unspecific tDCS effects, stimulating contralateral M1 only would be expected
to be more effective than stimulating both (because both M1s are competing). However, both bihemispheric montages should still be more effective than sham as contralateral M1is being stimulated. Under the hemispheric cooperation
model with polarity-specific tDCS effects, unihemispheric tDCS is expected to have the greatest facilitatory effect because contralateral M1 s being stimulated and ipsilateral M1 is unaffected. The exact prediction for the remaining three

conditions depends on the relative importance for each hemisphere in developing the skill.

well as a survey of medical history, musical and computer gaming expe-
rience, and previous exposure to brain stimulation. Exclusion criteria for
participation were as detailed previously (Waters-Metenier et al., 2014).
Participants gave written informed consent in accordance with the Dec-
laration of Helsinki and received financial remuneration with the possi-
bility of additional bonuses for completing the study and performance
improvements. The protocol was approved by the University College
London Research Ethics Committee.

Sequence task. The experiment required the fast production of differ-
ent unimanual five-digit sequences. The sequences were performed on a
custom-built, MRI-compatible, piano-like isometric force keyboard.
Forces exerted on each key were measured every 5 ms via transducers
(dynamic range of 0-25 N, FSG-15N1A; Honeywell).

The sequence task required participants to press each digit in a pre-
defined order. A computer screen showed each sequence as a specific
ordering of the numbers 1-5 where 1 referred to the left-mostand 5 to the
right-most key and the sequence was executed from left to right. In other
words, sequences were cued in an extrinsic, spatial reference frame. Based
on pilot experimentation (Wiestler and Diedrichsen, 2013), we selected
12 sequences of matched difficulty, excluding sequences that contained a
run of more than three adjacent digits. From these 12 sequences, each
participant was assigned a set of four sequences that would be trained
(Wiestler et al., 2014). The possible sets for training were as follows:
(1) 41352, 25314, 15423, and 51243; (2) 45132, 21534, 31425, and 35241;
and (3) 52134, 14532, 23541, and 43125.

A small (0.53 cm X 0.53 cm) green box flanking the presented se-
quence was displayed on the left and right to cue the respective hand that
should execute the sequence. A red box appeared on the other side indi-
cating that the hand should remain at rest on the keyboard. The instruc-
tional stimulus remained on the screen for 2.7 s, after which 5 white
asterisks were presented as a “go” signal. Each instructed sequence was
executed either four times in a row (in the pretest and posttest) or three
times (during training and fMRI acquisition) and each execution was
individually triggered with a “go” signal. There was a 500 ms interval
between consecutive sequence executions. Below, we define a single
“trial” as the set of three or four consecutive executions of the same
sequence.

The objective of the sequence task was to perform the five digit presses
as quickly as possible with minimal errors. For a digit press to be regis-
tered, the active digit had to exceed exerting a force of 2.5 N, whereas all
other digits had to generate forces of <2.2 N. After each digit press, the
corresponding asterisk changed color to provide feedback about whether
the individual press was as follows: “correct” (green), “incorrect” (red),
or “too hard” (yellow; that is, greater than the upper limit set for the task,
8.9N). Execution time (ET) was measured as the duration between onset
of the first press and release of the last press and error rate was defined as
the percentage of sequences that contained one or more incorrect digit
presses. Throughout behavioral training, a constant error rate was en-
couraged by instructing participants to speed up if the error rate was
lower than 20% and to slow down if it was higher.

After each sequence execution, participants saw a brief feedback (0.8 s):
1 green asterisk (1 point) indicated that all 5 presses of the sequence were
executed correctly; 3 green asterisks (3 points) meant that the sequence was
executed correctly and with =20% faster ET than the average of the previous
run; 1 blue asterisk specified that the sequence was performed 20% slower
than the average of the previous run (0 points); and 1 red asterisk signified

that 1 or more errors were made (— 1 point). Participants received a financial
bonus according to their point score.

Experimental design. All participants completed 4 study phases (Fig. 1):
(1) a pretest (day 1) in which baseline performance for 12 5-digit se-
quences was evaluated for both hands; (2) a 4 d training phase (days 2-5)
during which participants repeatedly practiced the same 4 sequences
with either the left or right hand for approximately 1 h (which was cou-
pled with 25 min of tDCS from the onset of training); (3) a posttest (day
6), which was conducted in the same manner as the pretest; and (4) an
MRI session (day 7).

The pretest started with a short practice run with 4 trials or 16 execu-
tions (4 executions of 2 easy sequences per hand) to familiarize partici-
pants with the task. During the pretest, participants performed all 12
sequences (4 to-be-trained and 8 untrained) with both the left and right
hands. Each hand was required to perform 2 trials per sequence with 4
executions per trial (i.e., 8 total executions). The pretest consisted of
eight runs with 24 trials per hand, which resulted in a total of 96 execu-
tions per hand. Within the first four runs, the order of sequences and
hands was permuted randomly and the order was reversed in the second
half to counterbalance possible learning effects.

We assigned subjects pseudorandomly to one of four stimulation
groups (sham, unihemispheric, bihemispheric, or RP bihemispheric
tDCS groups) and to training cohort (left or right hand training) such
that group differences in pretest performance were minimized (Waters-
Metenier et al., 2014). ANOVA across tDCS groups revealed no differ-
ence in baseline task ET (F(; o) = 0.158, p = 0.923; see Table 2 for
individual group means) and there was also no significant pairwise dif-
ference between any two stimulation groups (all £ < 1.10, p = 0.273).

At the beginning of each session, participants provided information
about sleep quality, alertness, attention, and task difficulty using visual
analog scales ranging from 0 (lowest) to 10 (highest). There were no
significant differences between stimulation groups in terms of these pa-
rameters (Table 2).

To ensure that both participants and experimenter were blind to tDCS
assignment, the randomization was performed by an investigator (J.D.)
who was not involved in data collection. The experimenter (S.W.) only
knew the hand training cohort and the electrode arrangement, not
whether the participant received real or sham stimulation, which was
determined by a randomized code entered into the tDCS machine at the
beginning of each session. Accordingly, 66.7% of the sham participants
(14/21) had bihemispheric electrode arrangement and 33.3% had unihemi-
spheric electrode arrangement. No significant behavioral differences were
found between these two subsets of the sham group on posttest performance
(F1,16) < 1454, p > 0.245; ANCOVA using pretest as covariate) for trained/
untrained hand and trained/untrained sequence ET.

During the 4 training days, participants practiced 4 of the 12 sequences
with either their left or right hand. A session consisted of 16 runs with 2
trials per sequence each. Therefore, participants performed 128 trials
(384 sequence executions) per day. On the day after the final session of
tDCS-coupled training, a posttest that had exactly the same structure as
the pretest was administered.

tDCS. tDCS was administered via a bihemispheric or unihemispheric
montage. In the unihemispheric montage, we placed the anode over con-
tralateral M1 and cathode over ipsilateral supraorbital ridge. For the bihemi-
spheric montage, we positioned the anode over contralateral and the cathode
above ipsilateral M1, with the RP montage involving the opposite polarity.
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Table 2. Participant demographic and psychological variables
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Group Sham Unihemispheric tDCS Bihemispheric tDCS Bihemispheric-RP tDCS Overall 4 groups
N (LH-trained; RH-trained) 21 (11;10) 15(8;7) 14(7;7) 14(7;7) Xfl) p
Sex (Female: Male) 13:8 7:8 6:8 9:5 0.66 0.42
Detectability of tDCS status
tDCS status: (Yes: No) 15:6 1M:4 10:4 11:3 15:6 32:11
X%l) p
0.06 0.80

tDCS perception averaged across all training days Fs.60 p
Discomfort (0:10) 232 £0.46 2.72 =039 3.30 £ 0.54 2.88 £0.37 0.846 0.474
Perceived intensity (0:10) 2.81 +0.40 3.28 = 0.44 2.84 = 0.62 391 =041 1.164 0.331
Distraction due to tDCS (0:10) 1.07 =031 1.80 = 0.38 1.63 = 0.43 157 =039 0.825 0.485
Demographics Fis60) p
Age 22.19 £ 0.95 24.00 = 1.59 22.93 £0.99 2243 £0.82 0.518 0.671
Handedness (Edinburgh) 88.09 = 1.87 8433 = 457 775 = 415 82.14 £3.95 1.661 0.185
Previous motor training (h) 640 = 293 872 =396 447 + 246 486 * 306 0.336 0.800
Baseline motor performance Fs.60 p
Baseline ET, 2.36 = 0.065 233 £0.15 245 %010 2.32 = 0.069 0.159 0.924
Psychological measures Fi60 p
Averaged across all days

Sleep hours 729 = 0.21 6.94 = 0.22 749 =0.19 749 = 0.21 1.393 0.254

Sleep quality (0:10) 7.28 £0.26 6.97 +0.19 7.89 +0.24 7.27 £0.26 2.155 0.102

Alertness (0:10) 6.77 = 0.35 6.62 £ 0.51 7.21 = 0.55 712 = 0.24 0.413 0.744

Attention (0:10) 7.65 +0.28 7.56 = 0.34 8.18 =032 7.04 = 0.52 1.490 0.226

Task difficulty (0:10) 4.56 + 0.45 543 =042 471 £037 5.16 = 0.30 0.993 0.403
Averaged across final training day and posttest

Semantic recall (% correct) 73.21 =459 88.33 £3.33 96.43 = 1.57 93.75 £ 2.54 7.362 0.0003

To evaluate group difference differences in sexand detectability of tDCS status, all three tDCS groups were compared individually against sham using a x? goodness-of-fit test. For all other parameters, mixed-effects ANOVA was calculated

with the between factor “tDCS.” All variables were averaged across left and right hand training cohorts.

The hand area of M1 was localized as the position where single-pulse su-
prathreshold TMS evoked a visible twitch in the contralateral first dorsal
interosseus muscle (Boroojerdi et al., 1999). This was implemented using a
Magstim BiStim?2 with a 5 cm figure-of-eight coil positioned tangentially to
the medial-sagittal plane skull at a 45° angle and with the handle pointing
posteriorly and a monophasic pulse was delivered. This angle was chosen
because it elicits the strongest the strongest perpendicular fields (Janssen et
al., 2015), which is optimal for stimulating corticospinal neurons transsyn-
aptically via horizontal corticocortical connections (Di Lazzaro et al., 2008;
Delvendahl et al., 2014). tDCS was administered over 4 consecutive training
days for the first 25 min of an ~60 min session of sequence training. A
current of 2 mA was delivered using a neuroConn DC-stimulator PLUS
(http://www.neurocaregroup.com/dc_stimulator_plus.html) through saline-
soaked 35 cm? electrodes.

Behavioral analysis. There was no significant difference between the
tDCS groups in terms of error rate during the pretest (F(5 ¢, = 0.252,p =
0.860; averaged across training group and hand) or training (F; ¢, =
1.082, p = 0.364; averaged across day). We only found a significant effect
of tDCS on error rate in the posttest, with tDCS recipients tending to be
more accurate than sham (F; ;) = 3.086, p = 0.0339; averaged across
training group and hand).

To adjust ET for the different error rates, we calculated the median ET for
each run, sequence, and hand over all (correct and incorrect) trials. For this
calculation, ET for the incorrect trial was replaced with the maximum ET of
that group of trials, thereby penalizing inaccurate performance.

We conducted preplanned statistical comparisons between each stim-
ulation group and sham, between bihemisperic and unihemispheric
groups, and between the two bihemispheric groups for the last training
day and the posttest. For these comparisons between pairs of groups, we
used an ANCOVA in which the error-adjusted ET at pretest was used as
a covariate to account for prior interindividual differences in perfor-

mance. This procedure effectively subtracts from each training/posttest
measurement the best prediction based on the pretest measurement.
Compared with simply subtracting the pretest measurement, this
method is less susceptible to noise induced by the larger variability in the
pretest measurements. The ANCOVA included “tDCS group” and “hand
training cohort” as between-subject factors. The threshold for all statis-
tical comparisons was p < 0.05. All data presented in the text and figures
are represented as mean * SEM.

fMRI data acquisition. All 42 bihemispheric tDCS recipients (sham and
real) underwent fMRI scanning 1 d after the posttest. Due to resource
limitations, we were not able to also scan the unihemispheric groups.
Although this group would have supplied additional information, it was
not critical to test our main hypothesis of polarity-independent changes
in both hemispheres after bihemispheric stimulation. At this point, at
least 48 h had elapsed since the final tDCS application. Therefore, any
group differences should be due to long-term neuroplastic changes in-
duced by tDCS because the immediate online effects of tDCS (Vernieri et
al., 2010; Mielke et al., 2013; Antal et al., 2014) should have been washed
out.

The fMRI session consisted of 8 runs comprised of 24 randomly or-
dered trials: 3 per trial type (4 sequences X 2 hands) with 3 sequence
executions per trial, yielding 72 total executions per run. Each trial con-
sisted of a cueing phase (2.7 s), followed by 3 executions of the cued
sequence triggered 3.6 s apart. Therefore, a trial lasted 13.5 s. Each se-
quence execution had to be completed within 2.8 s to allow for a 0.8 s
feedback phase.

To match behavioral performance during scanning, participants were
instructed to produce the sequence at a fixed speed of 1.3 s and as accu-
rately as possible. This ET was the fastest that subjects across all groups
could achieve with both trained and untrained hands with high accuracy
(~90% correct). In addition, throughout training, force levels of the
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sequences were kept similar by imposing a maximal force threshold. No
force level feedback was provided during fMRI scanning.

Baseline BOLD activation was measured during 8 randomly inter-
spersed rest phases of 13.5 s. To monitor for mirror activity on the non-
moving hand, participants were required to keep all 10 digits on the
keyboard and to generate a small baseline force of ~0.5 N at all times.

Functional images were acquired using a 3 T Siemens Trio MRI machine
with a 32-channel head coil. A 2D echoplanar sequence with a time of repe-
tition (TR) of 2.72 s was used to acquire the functional volumes (8 runs, 159
volumes per run, 32 interleaved slices with 2.7 mm thickness) in an inter-
leaved manner (3 mm gap and 2.3 X 2.3 mm? in-plane resolution). The
volumes were acquired in an oblique orientation with a 45° tilt angle from
the AC-PC line; this slice prescription provided coverage of motor regions
on the dorsal surface of the cortex, as well as the superior cerebellum and
basal ganglia, but excluded inferior prefrontal and inferior and anterior tem-
poral lobes. For full details of the fMRI acquisition, see Wiestler et al. (2014).

fMRI analysis. The analysis of the fMRI data is described in detail in
Wiestler et al. (2014), which reports the results from the sham group.
After standard preprocessing (correction for slice acquisition, motion
realignment, and coregistration to the individual anatomical image), we
used a first-level linear model implemented in SPM8 (Friston etal., 2007)
to estimate the activation for each of the four sequences for each hand.
The design matrix consisted of a regressor for each hand and sequence type
and an intercept for each run. The regressor was modeled as a boxcar func-
tion of 10.8 s beginning with the first go cue of the trial, which was then
convolved with a standard hemodynamic response function. From the esti-
mated regression weights, we computed the percentage signal change com-
pared with rest for each hand averaged across the four sequences.

For the group analysis, we reconstructed the cortical surface of each
individual participant using Freesurfer (Dale et al., 1999), which permits
the extraction of the white—gray matter surface and pial surface from
anatomical images. The functional data were then projected onto each
individual surface by averaging for each surface node the voxels that lay
between the white—gray matter and pial surfaces.

The individual surfaces were then aligned to a shared spherical tem-
plate for left and right hemispheres. This allowed us to flip the results for
the right-hand-trained cohort such that data from the trained hemi-
sphere, the hemisphere contralateral to the trained hand, was displayed
on the right group hemisphere and the data from the untrained hemi-
sphere on the left. We then conducted t tests between sham and tDCS
groups for each surface vertex using an uncorrected height threshold of
T(1,39) = 2.71, p = 0.005. Familywise error was controlled by calculating
the critical size of the largest suprathreshold cluster that would be ex-
pected by chance using Gaussian field theory as implemented in the
fmristat package (Worsley et al., 1996). Results were displayed using the
3D visualization software Caret (Van Essen et al., 2001).

For the profile plots shown in Figure 3, a and b, we defined a line
running from the posterior parietal cortex through the hand area of M1
to the anterior tip of Brodmann’s area 6 (BA6; premotor cortex). We then
averaged activity over the area 1.5 cm above and below that line (purple
area in Fig. 3d).

We also conducted a region of interest (ROI) analysis for the cortical
motor regions. They included the hand region of primary motor cortex
(M1, BA4); primary somatosensory cortex (S1, BA1-3); dorsal premotor
cortex; supplementary and presupplementary motor areas; and superior
parietal lobe, divided into an anterior (intraparietal sulcus) and posterior
(occipitoparietal junction) aspect. We defined all ROIs on the symmetric
group template and subsequently projected this into individual data
space via the respective individual surface.

The average activity in these ROIs was submitted to a ANOVA to calculate
differences between tDCS groups (factor “tDCS”) and interactions with
training hand (factor “hand”) and hemisphere (factor “hemisphere”). Be-
cause there were no significant functional differences between left and right
hand training cohorts (F, 55, < 2.21, p > 0.15, for all 6 ROIs, even without
correction) or interactions with any other factor, we analyzed the functional
data averaged over left and right hand training cohorts.
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Results

Bihemispheric tDCS increases motor learning more than
unihemispheric tDCS

We first determined whether conventional bihemispheric tDCS
is more effective in promoting learning than unihemispheric
stimulation. We used the error-adjusted ET (see Materials and
Methods) as an overall performance measure. By the end of 4 d of
sequence training, unihemispheric tDCS recipients executed se-
quences 0.203 = 0.101 s (16.6%) faster than sham (F, 5,, = 4.43,
p = 0.043; Fig. 2a,b, black vs blue lines). As in previous reports
(Reis and Fritsch, 2011), this advantage persisted during the post-
test, which was conducted without tDCS 1 d after the final train-
ing session (F(, 5;) = 8.13, p = 0.008). There was no significant
difference between the left- and right-hand-trained groups in the
size of this effect (F(, ;,) = 2.03, p = 0.164).

Participants who received conventional bihemispheric tDCS
were an additional 0.260 = 0.114 s faster than those who received
unihemispheric stimulation. The difference between bihemi-
spheric and unihemispheric groups was reliable (F(, ,,) = 12.44,
p = 0.002), as was the difference between bihemispheric and
sham groups (F(; 30, = 64.02, p = 6.24~%). These differences
were maintained during the posttest (respectively, F(, ,4) = 10.98,
p = 0.003 and F; 5, = 55.302, p = 2.75¢ ~ °*). Therefore, moving
the cathode from the supraorbital ridge (unihemispheric tDCS)
to ipsilateral M1 (bihemispheric tDCS) yielded nearly twice the
performance gain (37.8% relative to sham). Therefore, we repli-
cate here higher effectiveness for bihemispheric tDCS relative to
unihemispheric stimulation (Vines et al., 2008; Mahmoudi et al.,
2011; Karok and Witney, 2013; Lindenberg et al., 2013; Sehm et
al., 2013; Naros et al., 2016) in the context of a multiple-day
learning study.

RP bihemispheric tDCS increases motor learning

The interhemispheric competition model supposes that the ad-
vantage of bihemispheric relative to unihemispheric tDCS arises
due to cathodal suppression of ipsilateral cortex. This idea pre-
dicts that the RP montage should attenuate motor learning rela-
tive to sham because it decreases contralateral M1 excitability
both directly through cathodal and indirectly through ipsilateral
anodal stimulation.

Our data, however, showed the converse: RP bihemispheric
tDCS led to significantly faster ETs than sham stimulation, both
during the final training day (F, 5,, = 27.55, p = 1.154e ~*°) and
during the posttest (F,; 59, = 25.0, p = 2.32¢ ~*°). Statistically, the
performance of the RP group was indistinguishable from con-
ventional bihemispheric tDCS (last training day: F(, ,5, = 1.81,
p = 0.191, posttest: F(, ,5) = 1.93, p = 0.178). The ETs for the
conventional and RP bihemispheric groups were also symmetric
across left- and right-hand-trained groups: the tDCS group X
hand cohort interaction was not significant (F(, 53, = 0.11, p =
0.7459). Even though RP bihemispheric tDCS led numerically to
better outcomes than unihemispheric tDCS, this effect did not
reach statistical significance (last training day: F, ,,) = 2.97,p =
0.097, posttest: F(; 54y = 2.02, p = 0.168). However, the two bi-
hemispheric groups combined were significantly faster than the
unihemispheric group (last training day: F; 55, = 8.61, p = 0.006,
posttest: F(; ,4) = 6.66, p = 0.014).

Collectively, these results indicate that bihemispheric stimu-
lation was more effective than unihemispheric stimulation. This
additional benefit, however, was not conferred by ipsilateral sup-
pression because we did not find a polarity-specific effect for
bihemispheric tDCS. Instead, any stimulation of the ipsilateral
motor areas accelerated motor learning.
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1.34e ~%) and RP bihemispheric groups
(F14) = 2598, p = 1.78¢ %) all per-
formed significantly better on the un-
trained hand. In addition, performance
for the untrained hand was better in bi-
hemispheric relative to unihemispheric
tDCS recipients (F, 5, = 4.26, p = 0.047)
and there was no difference between the
bihemispheric tDCS groups (F(,,; =
0.05, p = 0.822).

Importantly, the enhancement of un-
trained hand performance was even larger
than what would have been expected if
generalization were simply proportional
to the improvements on the trained hand:
when expressing pretest/posttest differ-
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ence for the untrained hand relative the
learning gains for the trained hand, we
found that tDCS increased the proportion
of generalization. For sham recipients,
the untrained hand gained 58.5% of
the improvement of the trained hand,
whereas, for both bihemispheric tDCS
groups, the percentage of intermanual
generalization was greater (86—89.2%;
t,33) > 2,662, p < 0.012). These results
suggest that bihemispheric tDCS influ-
enced mainly effector-independent repre-
sentations in both hemispheres.

3 4 Post-
test

Behavioral tDCS effects generalize to
untrained sequences
All participants also improved on the un-
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Figure2.

These results, therefore, favor the bihemispheric cooperation
model by which the additional learning advantage of bihemi-
spheric relative to unihemispheric tDCS arises from plastic
changes in both hemispheres that would promote performance
for both hands. This idea makes two testable predictions. First, a
considerable part of the behavioral tDCS advantage should gen-
eralize to the untrained hand. Second, neural changes should
occur in both hemispheres in a polarity-unspecific manner. Be-
low, we test these predictions.

Behavioral tDCS effects generalize to the untrained hand

In the pretest and posttest, participants performed trained se-
quences with their untrained hand, allowing us to assess inter-
manual generalization. Consistent with previous results (Waters-
Metenier et al., 2014; Wiestler et al., 2014), even the sham group
showed considerable performance improvements on the un-
trained hand (Fig. 2¢,d). This generalization was even more pro-
nounced in the tDCS groups: relative to sham, unihemispheric
(F(1 1) = 12.43, p = 0.001); bihemispheric (F(, 54, = 26.99, p =

Left-hand
trained

Bihemispheric tDCS accelerates learning and generalization in a polarity-independent manner. a, b, Average ETin the
pretest, training, and posttest for sham (blue), unihemispheric (black), bihemispheric (red), and RP bihemispheric (green) tDCS
groups. Subjects trained with either the left hand (a) or right hand (b). ¢, d, Pretest and posttest data for the trained (c) and
untrained (d) sequences. Results are shown for the trained (T) and untrained (U) hands separated by group. The pretest results
(gray dashed line) are averaged across all four groups. Error bars and shaded region indicate between-subject SEM.

trained sequences from pretest to posttest
(Fig. 2d). This effect was promoted by
tDCS such that, for untrained sequences,
unihemispheric tDCS recipients were
0.310 = 0.105 s (19.4%) faster than sham
and bihemispheric recipients (conven-
tional and RP groups combined) were
0.231 * 0.137 s (17.6%) faster than uni-
hemispheric anodal tDCS recipients (and
both of these differences were significant;
respectively F(, 5;) = 6.73, p = 0.014 and
F336) = 8.13, p = 0.008). In addition, when we quantified the
proportion of transfer of speed advantages to untrained sequences
for the trained hand, we found that, across all groups, tDCS in-
creased the proportion of transfer relative to sham (F; 5y = 4.90,
p = 0.0041). Therefore, the effect of tDCS in this study is exerted at a
largely effector- and sequence-unspecific fashion, as we have re-
ported previously (Waters-Metenier et al., 2014).

U T
Right-hand
trained

Bihemispheric tDCS causes activation increases in

both hemispheres

To elucidate the neural consequences of tDCS stimulation, we
measured fMRI BOLD activation while participants executed the
four sequences with either the trained or untrained hand. Partic-
ipants were scanned 2 d after their final tDCS-coupled training
session such that our measure would reflect learning-related plas-
ticity rather than immediate effects or aftereffects of tDCS on
neural excitability or hemodynamics, which might not be directly
related to sequence learning (Vernieri et al., 2010; Mielke et al.,
2013; Antal et al., 2014). To prevent activity differences attribut-
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Bihemispheric tDCS recipients show greater average activation than sham in bilateral sensorimotor areas. a, Profile plot of percentage signal change relative to rest in the trained and

untrained hemispheres for trained hand executions. Results are shown for the sham, bihemispheric (Bi tDCS), and RP tDCS groups (Bi-RP tDCS). The x-coordinate indicates the distance from the
fundus of the central sulcus along the cortical surface in millimeters running from occipital-parietal junction (posterior) to the rostral tip of premotor cortex (anterior). b, Profile plot for the untrained
hand. ¢, Average sulcal depth along the profile. d, Location of areas averaged in the profile plots on an inflated brain surface (purple area) e, Average percentage signal change in six anatomically
defined ROIs (Wiestler and Diedrichsen, 2013; Wiestler et al., 2014). Brackets indicate that the two bihemispheric groups were significantly different from sham. **p << 0.0083, statistical threshold
for multiple comparisons, *p << 0.05. CS, Central sulcus; IPS, intraparietal sulcus; PoSC, postcentral sulcus; SFS, superior frontal sulcus.

able to simple behavioral differences, we closely matched the per-
formance in the scanner in terms of movement speed and force
across both groups and hands. The hemispheric cooperation
model predicts that similar neural changes should occur in both
hemispheres independently of polarity. As expected, for trained
hand executions, the sham group exhibited contralateral activa-
tion and ipsilateral deactivation in M1 and S1 (Figs. 3a, 4), as
often observed during simple unimanual hand movements such
as those that we studied here (Diedrichsen et al., 2013; Wiestler
and Diedrichsen, 2013). In contrast, both bihemispheric tDCS
groups, independently of polarity, showed greater contralateral
activation and no ipsilateral deactivation.

For statistical comparison, we combined the two bihemi-
spheric stimulation groups into a single tDCS group because we
did not find any significant clusters of differential activation be-
tween conventional and RP tDCS groups. A surface-based group
analysis (see Materials and Methods) showed that both con-
tralateral and ipsilateral S1 and M1 cortex had greater activa-
tion in tDCS recipients (Table 3) for movements of the trained
hand. Functional differences for the untrained hand were vi-
sually similar, but statistically less pronounced (Figs. 3b, 4b,
Table 3).

Analysis using anatomically predefined ROIs (Wiestler and
Diedrichsen, 2013) confirmed these results (Fig. 3e). Across both
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Figure4.  Bihemispheric tDCS recipients exhibit more activity in bilateral sensorimotor areas relative to sham. a, Activation maps for the trained and untrained hemispheres for the sham, bihemispheric (Bi
tDCS), and RP (Bi-RP tDCS) groups averaged across hand training cohort. Although the sham group exhibited ipsilateral deactivation (typically found in fMRI studies of unilateral movements), this pattern was not
found for either bihemispheric tDCS group. In addition, the tDCS groups exhibited higher contralateral activation. b, Corresponding maps for sequences executed with the untrained hand. ¢, d, Difference T-maps
for the activation in the tDCS groups relative to sham for the trained (¢) and untrained (d) hands. CS, Central sulcus; IPS, intraparietal sulcus; PoSC, postcentral sulcus; SFS, superior frontal sulcus.

Table 3. Effect of tDCS on average activation using surface-based analysis as tDCS > sham (% signal activation > rest)

MNI coordinates

Region (Brodmann's area) Area (mm?) Peak value T, 3, Plclust) X y z
Trained hand
Contralateral (trained) hemisphere
Postcentral (S1; BA3) 145.33 3.64 0.007 49.89 —22.22 51.78
Postcental (S1; BA3) 116.21 3.81 0.030 18.26 —39.58 65.61
Precentral (M1; BA4) 114.01 3.78 0.033 37.77 —20.16 57.22
Ipsilateral (untrained) hemisphere
Precentral (M1; BA4) 574.01 5N <0.001 —37.41 —26.36 55.81
Postcentral (S1; BA3) 229.65 4.45 <0.001 —17.03 —39.31 69.61
Orbital area/pars triangularis (BA47) 182.63 5.49 0.002 —42.46 29.98 —0.78
Untrained hand
Contralateral (untrained) hemisphere
Orbital area/pars triangularis (BA47) 116.31 439 0.031 —41.68 30.01 —0.44

Ipsilateral (trained) hemisphere = all nonsignificant

Between-subject analysis with uncorrected height threshold of T(; 55) = 2.71, p = 0.005. Area indicates the size of the suprathreshold cluster, T, 3o the maximal t-value, p s is the corrected probability of observing a cluster of this size
or bigger over the whole cortical surface by random chance (Worsley et al., 1996). Coordinates reflect the location of the cluster peak in MNI space.

hemispheres and hands, we observed activation increases in M1~ not quite reach significance in M1: F, 4o, = 3.72, p = 0.061.
(F(1,40) = 9.34, p = 0.004) and SI (F; 40, = 13.55, p = 0.0007).  This reflects that bihemispheric tDCS especially increased ac-
There was some evidence for an interaction of tDCS X hemi- tivation associated with the trained hand and ipsilateral (un-
sphere X hand in S1 (F; 4, = 4.16, p = 0.048), although this did  trained) hemisphere.
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Table 4. Execution time, error rate, and force during fMRI

Waters et al. ® Role of Ipsilateral Hemisphere in Motor Learning

Sham Bihemispheric tDCS RP-bihemispheric tDCS ANOVA across groups
Mean SE Mean SE Mean SE F39) p
Trained hand
Execution time (s) 1.36 (0.03) 1.30 (0.02) 132 (0.02) 2.602 0.0869
Error rate (%) 13.76 (2.36) 5.08 (1.18) 5.61 (1.70) 7.206 0.0022
Force (N) 5.99 (0.34) 5.65 (0.29) 6.85 0.22) 4,627 0.0157
Untrained hand
Execution time (s) 1.40 (0.04) 132 (0.02) 1.31 (0.01) 4,506 0.0174
Error rate (%) 15.43 (2.03) 6.50 (1.23) 5.75 (1.30) 11.864 0.0001
Force (N) 5.69 (0.26) 5.50 (0.27) 6.71 (0.29) 5718 0.0066

Table shows mean (==SE) of behavioral parameters for all three tDCS groups during fMRI scanning (averaged across hand training cohort). The last column indicates an F-test comparing the three groups.

Table 5. Mirroring of digit forces during fMRI

Sham Bihemispheric tDCS RP-bihemispheric tDCS ANOVA across groups
Mean SE Mean SE Mean SE Fiz9) p
Trained hand
Force range 0.13 (0.01) 0.14 (0.01) 0.15 (0.03) 0.356 0.703
D 0.03 (0.00) 0.03 (0.00) 0.04 (0.01) 0.497 0.612
Correlation of force
traces 0.07 (0.002) 0.07 (0.05) 0.03 (0.03) 0.387 0.682
Untrained hand
Force range 0.12 (0.01) 0.12 (0.01) 0.13 (0.02) 0.293 0.745
D 0.03 (0.00) 0.03 (0.00) 0.03 (0.01) 0.260 0.773
Correlation of force
traces 0.09 (0.02) 0.05 (0.03) 0.02 (0.03) 1.981 0.154

Table shows mean (= SE) of the average force range in Newtons (maximum — minimum) and SD of the passive (nonmoving) hand. Results were split depending on whether the trained hand or the untrained hand was the passive hand.
The correlation between the forces was calculated between the force time series of the matching digits of the active and passive hands. The last column indicates the F test comparing the three groups.

We also observed the expected hemispheric asymmetries
with more ipsilateral activity in the left hemisphere during left
hand movements compared with activity in the right hemi-
sphere during right hand movements (Verstynen et al., 2005).
This hemispheric asymmetry was significant for M1 (F, 59y =
31.137,p = 1.983¢ ®) and S1 (F(, 5, = 21.73, p = 3.621e °),
but did not interact significantly with the tDCS effect.

Despite our best efforts to match behavioral performance dur-
ing fMRI, there were slight, but significant differences between
the groups (Table 4). However, the differences in ET were very
small (~40—-60 ms) and the differences in force relative to sham
were not consistent across the two bihemispheric tDCS groups
(force was slightly lower than sham in the conventional bihemi-
spheric tDCS group and slightly higher than sham in the RP tDCS
group). Nevertheless, to ensure that the observed increases in
activation could not be attributable to these small behavioral
differences, we included execution time, error rate, and force as
covariates in ANCOVA analyses and found that, for all compar-
isons, the effect of tDCS remained significant for both M1 (re-
spectively, F(; ;o) = 7.26, p = 0.01; F; 59 = 14.03, p = 0.001;
Fiise = 8.29, p = 0.006) and S1 (F(, 59, = 8.02, p = 0.007;
Fi1s0) = 10.99, p = 0.002; F(, 5, = 12.78, p = 0.001).

Another potential confound that could lead to increased ipsilat-
eral activation is mirroring. Mirroring refers to the phenomenon
whereby muscles of the nonmoving hand are activated simultane-
ously with those of the moving hand (Beaulé et al., 2012). Such
movements are typically visible in pathological states (e.g.,
stroke), but are also present and measurable in healthy popula-
tions. During fMRI, participants were required to rest the passive
hand on the keyboard while the active hand was executing se-
quences. Mirroring was parameterized using the range of forces
on the passive hand across the time course of a trial, the associated
SD, and the correlation between the force traces for matching
digits of the passive and active hand. Even though the significant

positive correlations indicated that we could successfully detect
the very subtle mirroring in our healthy control participants,
there were no significant difference between tDCS groups for any
of these measures (Table 5).

Together, these data demonstrate that bihemispheric tDCS,
regardless of the polarity, was associated with increases in average
activation in both ipsilateral and contralateral hemispheres. This
difference could not be explained by behavioral differences be-
tween the groups during the scan.

Quantification of subject blindedness and perceptual side
effects of tDCS

Subsequent to each session of tDCS administration, participants un-
derwent a previously designed battery to characterize tDCS effects
(Waters-Metenier et al., 2014) with the addition of questions about
perceptual side effects. Specifically, participants were asked to rate
the experience of tingling, pain, burning, itching, dizziness, and
mental fatigue (1:10) and then to describe (in minutes) the duration
of the effect. As can be seen in Figure 5a, tDCS recipients tended to
exhibit slightly higher intensities of perceptual properties of tDCS,
especially in terms of tingling, burning and itching; however, none of
these variables showed a significant between-group difference (all
te < 1.446, p > 0.153) or exceeded level 4 (of a maximal rating of
10) for any of the 64 subjects.

However, the groups tended to differ on how long they expe-
rienced these side effects (Fig. 5b). Averaged across the three
tDCS groups (unihemispheric, bihemispheric, and RP bihemi-
spheric), subjects reported significantly longer durations of tin-
gling (t,) = 2.553, p = 0.013), burning (t,, = 2.492, p =
0.015), and itching (t,, = 2.833, p = 0.006) and a tendency for
longer duration of pain (t4,, = 1.806, p = 0.076). There were no
differences in the duration of dizziness (t,, = 1.051, p = 0.298)
or mental fatigue (¢.,) = 0.671, p = 0.505) between sham and
tDCS groups. As observed previously (Waters-Metenier etal., 2014),
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Online perceptual side effects of tDCS. We monitored the potential online side effects of tDCS to evaluate perceptual differences between tDCS groups and sham. a, For the intensity level

of all six effect types, there were no significant differences across tDCS groups. b, However, the differences between tDCS and sham tended to be greater for the duration of these side effects and
significant differences were observed for duration of burning and itching (indicated by asterisks). ¢, Posttest performance of the configuration task speed (left) and mean deviation (right) for the
sham (blue), bihemispheric (red), and RP bihemispheric (green) groups. d, Posttest performance of individuation root mean square error. tDCS recipients experienced no adverse behavioral effects

as a result of tDCS-coupled sequence training.

participants experienced no significant differences in overall dis-
comfort, perceived tDCS intensity, or distraction due to tDCS (Table
2). Moreover, x* goodness-of-fit tests showed that there were no
differences in the detectability of tDCS assignment between tDCS
groups and sham (Table 2). These findings collectively suggest that,
despite slight perceptual differences, tDCS blinding methods were
sufficient. This is congruent with other recent evidence (Kessler etal.,
2012), including a study that investigated over twice as many sub-
jects at 2 mA (Russo et al., 2013).

Assessment of behavioral side effects of tDCS

In addition to the main training task (the sequence task described
above), we tested all bihemispheric tDCS and sham recipients on
two additional tasks of manual skill during the pretest and posttest:
individuation (the ability to move the digits separately) and config-
uration execution (the skill of pressing certain digits at the same time
while keeping coactivation of unintended digits minimal; for full
details of these tasks, see Waters-Metenier et al., 2014). Neither bi-
hemispheric tDCS group exhibited any side effects from tDCS-
coupled sequence training on either of these skills (Fig. 5¢,d) and
there were no significant differences between the two bihemispheric
groups and sham (all F,;5,<<2.092, p > 0.139; using ANCOVA
correction with pretest performance). Therefore, as in our previous
work, we did not find any adverse trade-offs between using tDCS to

facilitate manual motor skill learning and performance on untrained
tasks (Waters-Metenier et al., 2014).

Discussion

Our study provides evidence for an active role of ipsilateral motor
regions in unimanual motor skill learning. We replicated the
classic observation that bihemispheric tDCS is more effective
than stimulating only one hemisphere (Vines et al., 2008). Criti-
cally, bihemispheric tDCS with the anode over ipsilateral motor
cortex led to similar learning advantages as with the anode over
contralateral motor cortex. Finally, both montages led to long-
lasting increases of functional activity in bilateral sensorimotor
areas and the tDCS-induced learning advantage generalized to
the untrained hand.

Our results clearly argue against the interhemispheric compe-
tition model as an explanation for the advantage of bihemi-
spheric over unihemispheric tDCS. According to this idea,
cathodal stimulation suppresses the ipsilateral hemisphere, sub-
sequently releasing the contralateral hemisphere from interhemi-
spheric suppression. Our results for the RP bihemispheric group
are at odds with this explanation because excitatory stimulation
of the ipsilateral cortex should have led to attenuated, rather than



7510 - J. Neurosci., August 2, 2017 - 37(31):7500-7512

accelerated, motor learning relative to unihemispheric (or even
sham) stimulation.

Instead, the full pattern of our results can be explained under
the assumption that tDCS increased plasticity in both hemi-
spheres independently of polarity and that the two motor cortices
cooperate in producing high levels of skill (see Table 1). One
limitation of our study is that we did not measure changes in
bilateral MEPs directly before and after tDCS. Therefore, we
cannot make strong inference about whether the cathodal stim-
ulation in the bihemispheric montage increased or decreased
short-term excitability in M1. For example, there is some evi-
dence that cathodal unihemispheric tDCS stimulation at 2 mA
increases, rather than decreases, MEPs (Mordillo-Mateos et al.,
2012; Batsikadze et al., 2013; but see Cengiz et al., 2013). Impor-
tantly, previous studies of the effect of bihemispheric tDCS on
MEPs have not exhibited consistent excitability changes using a
bihemispheric montage: in contrast to unihemispheric tDCS, bi-
hemispheric stimulation has been found to either produce no
significant changes in MEPs (O’Shea et al., 2014) or changes that
were statistically less robust (Mordillo-Mateos et al., 2012). These
results raise the possibility that the changes in motor plasticity
shown behaviorally in this and previous studies (Vines et al.,
2008) rely on different mechanisms than those reflected in the
polarity-specific changes in MEPs. A parsimonious explanation
for our results is that the behavioral tDCS effects are related to the
spatial distribution of electrical currents rather than to the cur-
rent direction. Biophysical current modeling of tDCS (Truong et
al., 2014; Naros et al., 2016) demonstrates that the unihemi-
spheric montage primarily sends current through contralateral
premotor and ipsilateral prefrontal regions, whereas bihemi-
spheric stimulation targets motor and premotor regions bilater-
ally. Importantly, the weak radial currents that give rise to the
polarity-specific effects on MEPs switch directions on opposite
sides of the gyrus (Rahman et al., 2013). Therefore, premotor
areas in both hemispheres could experience either suppression or
excitation depending on their folding geometry. The effects of
tDCS on neuroplasticity, therefore, could be mediated by the
considerably stronger tangential currents, which, in contrast to
the radial currents, do not have polarity-specific effects (Rahman
et al., 2013). Under this assumption, bihemispheric tDCS (inde-
pendently of polarity) would have increased neural plasticity in
both hemispheres in a manner unrelated to the changes measure-
able with MEPs.

Even under the assumption of polarity-unspecific tDCS ef-
fects on plasticity, our results remain incompatible with the
hemispheric competition model: if the cathode promoted plas-
ticity in ipsilateral M1 during training, then the interhemispheric
competition model would have predicted a disadvantage of both
bihemispheric montages relative to the unihemispheric montage
because bihemispheric stimulation would increase the putatively
harmful ipsilateral activation (see Table 1).

Instead of probing excitability of the primary motor cortex
after tDCS stimulation using TMS, we evaluated task-related ac-
tivity using fMRI after transient tDCS effects had been washed
out. An advantage of this approach is that we avoided possible
interference with the process of memory consolidation through
the necessary TMS stimulation to M1 when measuring MEPs
(Muellbacher et al., 2002). We observed that the average activity
during trained hand movements was larger in bihemispheric
tDCS groups in both contralateral and ipsilateral sensorimotor
regions. The results for the untrained hand were similar, albeit
less robust. Previous work has demonstrated bilateral activity
increases in M1 during the application of bihemispheric tDCS
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(Lindenberg et al., 2013). Similar online (Kwon and Jang, 2011;
Stagg et al., 2012) or short-lasting (Baudewig et al., 2001; Kwon et
al., 2008; Jang et al., 2009; Stagg et al., 2009; Kim et al., 2012)
changes underneath the anode have also been reported for uni-
hemispheric tDCS. Importantly, we measured functional activity
~48 h after the end of the final stimulation. Therefore, the activ-
ity increases reported here reflect longer-lasting changes caused
by neural plasticity rather than any immediate effects of tDCS on
the hemodynamic response.

The fact that the activation changes in our study were re-
stricted to M1 and S1 should not necessarily be taken as evidence
that the relevant neuroplastic changes only occurred here.
Rather, it is equally possible that tDCS led to increased plasticity
bilaterally in premotor or supplementary motor cortex and that
the increased activity in M1 and S1 reflects the increased modu-
latory input from these areas.

Increased plasticity in motor and premotor areas of both
hemispheres would also explain our observation that the behav-
ioral advantages due to tDCS generalized to the untrained hand.
In a previous study, we used multivoxel pattern analysis to iden-
tify commonalities in the neural encoding of specific motor se-
quences for the left and right hands (Wiestler et al., 2014)" We
found widespread, shared representations in both premotor and,
surprisingly, primary motor areas of both hemispheres. Given
that tDCS increased the amount of intermanual generalization, it
appears likely that effector-independent sequence representa-
tions were particularly facilitated.

To summarize, we demonstrate that conventional and RP bi-
hemispheric tDCS similarly increase motor learning and BOLD
activation in both anode- and cathode-modulated hemispheres.
Therefore, our study provides evidence for an active role of the
ipsilateral cortex in unimanual motor control in young, healthy
individuals, consistent with previous reports in older adults or
victims of stroke (Johansen-Berg et al., 2002; Zimerman et al.,
2014). tDCS effects on plasticity are still often construed in terms
of excitation/inhibition of neural tissue under the electrodes and
the interhemispheric competition model is commonly used to
explain the superiority of bihemispheric tDCS. The idea of pro-
moting motor learning by reducing ipsilateral excitability is par-
ticularly pertinent to stroke neurorehabilitation, where it has led
to the supposition that suppressing activity in the healthy hemi-
sphere to release inhibition of lesioned cortex may facilitate re-
covery (Hummel and Cohen, 2006; Williams et al., 2010;
Bolognini et al., 2011; Nitsche and Paulus, 2011; Takeuchi and
Izumi, 2012; Zimerman et al., 2012; Krause et al., 2013; Lefebvre
et al., 2014). Although the hemispheric cooperation model pro-
posed here must be tested in elderly participants and individuals
with stroke, our data suggest that a simple excitation/inhibition
model may be too simplistic and should be abandoned in favor of
a framework that acknowledges the broad effects of tDCS current
and the roles that both hemispheres play in the encoding of in-
formation during motor learning.
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