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Behavioral/Cognitive

Effector-Independent Motor Sequence Representations Exist
in Extrinsic and Intrinsic Reference Frames

Tobias Wiestler,1* Sheena Waters-Metenier,1,2* and Jörn Diedrichsen1

Institutes of 1Cognitive Neuroscience and 2Neurology, University College London, London WC1N 3AR, United Kingdom

Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific
fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also
facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in
intrinsic/body-centeredcoordinates.Here,weusedfunctionalmagneticresonanceimaging(fMRI)andmultivoxelpatternanalysistodetermine
the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences
with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were
equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns
correlatedhigherforextrinsicthanforunrelatedpairs,providingevidenceforanextrinsicsequencerepresentation.Incontrast,primarysensory
and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in
caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coor-
dinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent
sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This
indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but
preferentially draws upon sequential knowledge represented in the trained hemisphere.

Key words: coordinate transformations; intermanual transfer; motor sequences; multivoxel pattern analysis; skill learning

Introduction
Many motor skills, for instance, playing a musical instrument or
writing, demand the production of long sequences of move-
ments. Behavioral evidence indicates that motor sequences are
not encoded at a single level of the motor hierarchy, but rather at
various stages in the translation from abstract action goals to
muscle commands (Keele et al., 1995; Hikosaka et al., 1999). Take
the example of learning a novel piano tune: the motor system can
acquire a representation in terms of musical notes or key posi-
tions (i.e., in “extrinsic” or environmental coordinates), or in
terms of the necessary muscle commands (i.e., in “intrinsic” or
body-centered coordinates; Fig. 1a).

The reference frame of a sequence representation determines
whether and how the skill generalizes to the contralateral effector
(for review, see Shea et al., 2011). Extrinsic sequence representa-
tions are, by definition, effector-independent: learning a se-
quence with one hand improves performance of the same
sequence in extrinsic space with the other hand (Grafton et al.,
2002; Kovacs et al., 2009; Boutin et al., 2012). Conversely, it has
been hypothesized that sequence representations in intrinsic co-
ordinates are effector-specific (Fig. 1a; Hikosaka et al., 2002), and
that learning in this coordinate frame only benefits trained hand
performance (Karni et al., 1995). There is, however, also some
evidence that learning transfers to sequences that demand the
mirror-symmetric pattern of muscle activity (Bapi et al., 2000;
Korman et al., 2003; Panzer et al., 2009; Gruetzmacher et al.,
2011). This suggests that effector-independent representations
may also exist in intrinsic coordinates (Fig. 1b).

Here, we ascertained whether brain regions exhibit effector-
independent sequence representations in intrinsic space, and if
so, how these differ from extrinsic representations. Using multi-
voxel pattern analysis (MVPA), we recently demonstrated that
different movement sequences, all matched for kinematic param-
eters, elicited classifiably different activity patterns in motor/pre-
motor areas (Wiestler and Diedrichsen, 2013). Classification
relied on a unique spatial activity pattern for each sequence,
rather than on differences in temporal profiles, indicating that
single voxels developed preferential tuning for certain sequences.
Furthermore, the sequence-specific component of these activity
patterns increased with training. We use this technical innova-
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tion to test whether motor regions contain an extrinsic or intrin-
sic effector-independent representation.

Participants practiced four different five-finger sequences
with one hand, and subsequently performed these with either
hand during fMRI. Each trained sequence had an extrinsic match
on the contralateral hand (involved the same spatial keyboard
positions), an intrinsic match (involved the same sequence of
fingers), and was unrelated to the two remaining sequences (Fig.
1c). In regions with an extrinsic, effector-independent represen-
tation, the four extrinsic sequence pairs (Fig. 1d) should exhibit
more similar activity patterns than any of the unrelated pairs. In
regions with intrinsic coding, the four intrinsic pairs should evoke
similar activity patterns. In regions with effector-dependent repre-
sentations, any sequence pair should be equally dissimilar. This
paradigm enabled us to map the cortical architecture of sequence
representations across the cortex, test for the existence of
effector-independent representations in a body-centered refer-
ence frame, and to investigate how training on either hand influ-
enced these representations.

Materials and Methods
Participants. Fourteen healthy, right-handed participants (7 male, 7 fe-
male; average age 21.86 years, SD � 2.74; average Edinburgh Handedness

Inventory score 89.64, SD � 7.46) volunteered for the experiment. All
procedures were approved by the University College London Research
Ethics Committee. Exclusion criteria were identical to those used in a
previous independent study (Waters-Metenier et al., 2014). The 14 sub-
jects served as a sham control group in a larger study with 28 additional
participants who received bihemispheric transcranial direct current
stimulation (tDCS) during training. All results reported in this paper are,
if not otherwise noted, based on the 14 sham participants only. However,
all main findings replicate in the full set of 42 participants, and we occa-
sionally report statistics on the full group, if the results in the sham group
were of marginal significance. Comparisons between sham and tDCS
groups will be reported in a separate paper.

Apparatus. Sequences were executed on a keyboard comprised of 10
piano-style keys. These keys could not be depressed, but were equipped
with force transducers (FSG-15N1A, Sensing and Control, Honeywell;
dynamic range, 0 –25 N), that measured the force exerted by each finger
with an update rate of 5 ms. The device was engineered to be MRI-
compatible by using shielded cables and inserting a low-pass filter where
the cable penetrated the wall of the shielded scanner room and has been
previously described in detail (Wiestler et al., 2011).

Procedure: behavioral training. The sequence task required participants
to press each finger in a predefined order, which was represented as numeric
characters on a computer screen. Each trial started with the presentation of
an imperative cue (for 2.7 s) that instructed each participant which sequence
to execute, followed by three (or, during pre- and post-test, 4) executions of
the same sequence. The display consisted of a string of five numbers within a
box, which indicated, from left to right, the keys that had to be pressed.
Because we wanted to distinguish a representation in intrinsic coordinates
from a representation of the visual stimulus, the cue was presented in extrin-
sic coordinates. Specifically, “1” referred to the left-most key (left little finger
or right thumb), whereas “5” referred to the right-most key (left thumb or
right little finger). Thus, extrinsic, but not intrinsic, sequence pairs shared the
same numbers on the screen during the cue phase. Two small (0.53 � 0.53
cm) colored boxes flanking the sequence instructed participants which hand
to use; the hand on the side of the green box was required to execute the
sequence while the one on the side of the red box remained still and resting
on the keyboard.

Each of the three (or 4) sequence executions was triggered separately
with five white asterisks, which served as the “go” signal. The objective of
the task was to perform the five presses as fast as possible while keeping
errors to a minimum. Fingers had to be pressed in the correct sequence
with a force of at least 2.5 N, whereas all other fingers had to rest on the
keyboard with a force �2.2 N. After each correct press, the correspond-
ing asterisk in the sequence turned green, but when participants pressed
an incorrect key, the corresponding asterisk turned red. Additionally,
asterisks turned yellow for correct presses that exceeded the upper force
limit (8.9 N). Execution time (ET) was measured as the duration between
the onset of the first press and the release of the last press, and error rate
was defined as the percentage of sequences that contained one or more
incorrect finger presses. Throughout the behavioral training, we encour-
aged a constant error rate by instructing participants to speed up if error
rate was lower than 20% and slow down if it was higher. For data analysis,
we calculated the median ET for each run, sequence, and hand over all
(correct and incorrect) trials and then averaged these results across se-
quences and participants. To penalize runs in which participants made a
larger number of errors, we replaced the ET for incorrect trials with the
maximum ET of that run and sequence, which effectively increased the
median ET by an amount related to the error rate.

After each sequence execution, participants were shown brief feedback
(0.8 s) as follows: one green asterisk (equivalent to 1 point) indicated that
the sequence was correct; three green asterisks (� 3 points) meant that
the sequence was correct and executed with �20% faster ET than the
average in the previous run; one blue asterisk specified that the sequence
was executed with 20% slower ET than the average of the previous run (�
0 points); and one red asterisk signified that one or more errors were
made in the sequence (� �1 point). Participants received a financial
bonus according to their final point score.

All sequences consisted of a different ordering of the same five fingers.
We excluded any sequence that contained a run of more than three
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Figure 1. Effector-independent representations. A, Hypothetical motor hierarchy: a stimu-
lus (e.g., notes when playing the piano, or numbers, as in this experiment) is translated into an
extrinsic representation of the keys that need to be pressed and subsequently into an intrinsic
representation of the muscle commands for each hand. In the traditional conceptualization
(Hikosaka et al., 2002), intrinsic representations are specific to the effector (hand) used. B,
Alternative architecture: even the intrinsic sequence representation is still partly shared across
hands in a mirror-symmetric fashion. C, Experimental design: during scanning, participants
performed four sequences with the left and right hand. Each sequence of a given hand corre-
sponded to one sequence on the other hand in extrinsic coordinates (blue, same numbers on the
screen), and to one sequence in intrinsic coordinates (red, same sequences of muscle com-
mands). D, Across hands, there were 16 possible pairs of sequences, of which four were extrin-
sic, four intrinsic, and eight unrelated pairs.
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adjacent fingers. From the remaining candidate sequences, we selected 12
sequences of matched difficulty, based on pilot experimentation (Wies-
tler and Diedrichsen, 2013). These sequences were divided into three
training sets that each consisted of four sequences, two “original” unre-
lated sequences (e.g., A and B) and their spatially mirror-reversed coun-
ter parts (A� and B�). Thus, left hand sequence AL was identical to AR in
extrinsic space (i.e., the same relative spatial positions on the keyboard)
and to A�R in intrinsic space (i.e., the same fingers; Fig. 1c). Within each
hand and set, all sequences were made maximally different from each
other by avoiding sequences that shared any common transitions be-
tween two fingers.

The experiment started with a short practice run with four easy se-
quences to familiarize participants with the task. During the pretest,
participants performed the full set of 12 sequences (4 to-be-trained and 8
untrained) with both left and right hands. Each hand performed two
trials per sequence (with 4 executions per trial). Pre- and post-tests con-
sisted of eight runs with 12 trials each. Within the first four runs, the
order of sequences and hands was randomly permuted, and the order was
reversed in the second half to counterbalance possible learning effects.
Subjects were then assigned to one of two groups: one cohort that prac-
ticed with the left hand, and a cohort that practiced with the right hand.
Training lasted for 4 d, during which subjects practiced the four se-
quences of one of the three possible sequence sets. The set assignment was
counterbalanced across the two cohorts. Each training session lasted �an
hour, during which participants performed 128 trials (with 384 sequence
executions), divided into 16 runs with two trials per sequence each. The
behavioral experiment ended with a separate session for the post-test,
which was conducted in exactly the same way as the pretest.

Procedure: imaging. One day after the post-test, participants under-
went functional magnetic resonance imaging. Functional images were
acquired using a 3T Siemens Trio MRI scanner with a 32-channel head
coil. We used a 2D echo-planar sequence with a TR of 2.72 s, eight runs,
159 volumes per run, 32 interleaved slices with 2.7 mm thickness, 3 mm
gap, and 2.3 � 2.3 mm 2 in-plane resolution. The images were acquired in
an oblique orientation, with a �45° tilt angle from the AC-PC line. This
permitted coverage of the motor regions on the dorsal surface of the
cerebral cortex, as well as the superior part of the cerebellum. The slice
prescription excluded the inferior prefrontal, interior, and anterior tem-
poral lobes. To correct for distortions due to field inhomogeneities, we
also acquired a B0 field-map (Hutton et al., 2002). To reconstruct the
cortical surface, we acquired an anatomical image using a 3D MPRAGE
sequence with 1 mm isotropic resolution.

During fMRI, participants performed the four trained sequences with
either the right or left hand; the eight untrained sequences were not
imaged. Each of the eight imaging runs consisted of 24 randomly ordered
trials (3 per trial type, 4 sequences � 2 hands, with 3 sequence executions
per trial, yielding 72 total executions per run). Each trial consisted of a
cueing phase (2.7 s � 1 TR) and three sequence executions, triggered 3.6 s
seconds apart, and therefore lasted 13.5 s (5 TRs). Participants were
instructed to produce the sequence with an ET of �1.3 s as accurately as
possible. This speed was selected because it was the fastest speed that
most subjects could achieve with both trained and untrained hands. Each
sequence execution had to be completed within 2.8 s to allow for a 0.8 s
feedback phase. No extra feedback was given for fast performance or hard
presses, and “too slow” feedback was only shown when ET exceeded 1700
ms. Otherwise, cues and feedback were identical to those presented dur-
ing behavioral training. Baseline BOLD activation was measured during
8 randomly interspersed rest phases of 13.5 s during which participants
were instructed to fixate on a central asterisk presented on the screen and
to avoid movement. To monitor for mirror activity on the nonmoving
hand, participants were required to keep all 10 fingers on the keyboard
and to produce a small baseline force of �0.5 N at all times.

Basic data analysis. Data analysis was performed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/) and custom-written MATLAB (MathWorks) rou-
tines. The first three TRs of each functional run were excluded to allow
the functional imaging signal to approach equilibrium. The remaining
156 images were adjusted for the sequence of slice acquisition, and sub-
sequently corrected for field inhomogeneities and head motion (Hutton
et al., 2002). The data were high-pass filtered to remove slowly varying

trends with a cutoff frequency of 1/128 s and coregistered to the individ-
ual anatomical scan. No smoothing or normalization to a group template
was implemented during preprocessing.

The data were analyzed using a general linear model to obtain esti-
mates of how much each voxel was activated by each of the 8 trial types (4
sequences � 2 hands) in each of the 8 runs. The regressors in the design
matrix consisted of boxcar functions that assumed the value of 1 while
the respective trial type was executed, and zero otherwise. Each regressor,
therefore, averaged activation across the three sequence executions
within each trial and across the three occurrences of each trial type within
each run. The boxcar functions were then convolved with an individual
estimate of the hemodynamic response function. The model of the he-
modynamic function was composed of two Gamma functions: the first
modeled the activation and the second the post-stimulus undershoot.
Each component had a free parameter for the delay to peak, dispersion,
and onset (see spm_hrf.m in SPM8). These parameters were estimated
for each subject by optimizing the proportion of variance that the model
could explain of the time-series of voxels in the primary motor cortex
(bilaterally). These estimates were then applied to the whole brain. For
HRF estimation, we treated all sequences of the left and all sequences of
the right hand as one trial type; therefore, this procedure did not bias any
subsequent analysis that concerned differences between sequences. The
64 estimates for the regression coefficients (8 runs � 4 sequences � 2
hands) were used in the subsequent multivariate analyses.

Classification analysis. To test whether different sequences led to dis-
cernibly different local activity patterns, we used linear discriminant
analysis (Duda et al., 2001). Classification was performed for each par-
ticipant and each hand separately. The input data consisted of four (se-
quences) by eight (runs) activation estimates for a set of P voxels, selected
by the surface-based searchlight or region of interest (ROI) approach (see
below). For each run and hand, we subtracted the mean activity of each
voxel averaged over the four sequences. The data from seven runs were
used to estimate the mean activation vector for each sequence, and the
average P � P within-sequence covariance matrix (Wiestler et al., 2011).
The activation vectors from the remaining eighth run were then classified
by assigning them to the class with the highest likelihood, assuming that
each sequence pattern came from a multivariate normal distribution
with a separate mean but identical covariance. We repeated this proce-
dure eight times, each time leaving out a different run, thereby obtaining
overall cross-validated classification accuracy. If the area showed reliable
differences between activation patterns for the four sequences, then clas-
sification accuracy should be above chance (25% correct). For between-
subject analyses, accuracy values were transformed to z-values assuming
a binomial distribution (Pereira et al., 2009).

Above-chance classification accuracy of fMRI data are potentially at-
tributable to behavioral confounds (Todd et al., 2013). For instance, one
could observe above-chance classification accuracy if the four sequences
were performed with different speeds and the BOLD signal in a region
reflected the speed of movement. Therefore, we calculated the average
execution time, error rate and peak force averaged over the fingers for
each sequence and imaging run. We then used these values, instead of the
voxelwise activation estimates, in the classification analysis and corre-
lated those resultant accuracy values across participants with those ob-
tained from activation data.

Pattern-component modeling. To test for existence of effector-
independent representations, we correlated activity patterns of the left
and the right hand. Raw correlations, however, are highly susceptible to
the level of noise and common activation patterns. We therefore decom-
posed activity patterns using a pattern-component modeling approach
(Diedrichsen et al., 2011), allowing us to calculate the proportion of the
informative activity patterns that was shared between the two hands.
Specifically, the activity pattern ( y, a P � 1 vector) for the i�th hand (L vs
R), j�th sequence (1– 4) on the k�th run (1– 8), was modeled as follows:
yi,j,k � handi � seqi,j � runk � noisei,j,k.

The pattern component that was shared by all sequences executed with
one hand (handi) was assumed to have different variances across voxels
for the left and right hands, var(handL) and var(handR), and a shared
covariance covH � cov(handL, handR). The sequence-specific component
(seqi,j) was assumed to have the same variance for all sequences of a given
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hand, but different variances across hands, yielding two estimates:
var(seqL) and var(seqR). Sequence pairs in an extrinsic reference frame
also shared a covariance term, i.e., cov(seq1,L, seq1,R)�covE, with a corre-
sponding covariance term for each intrinsic pair (covI). The eight run-
specific components were modeled to have the same variance and to be
uncorrelated across runs. Finally, the noise component (with variance
��

2) was assumed to be uncorrelated across trials and not correlated with
any of the other components. The key concept in pattern component
modeling is that each of the components is considered a randomly dis-
tributed variable across voxels. Thus, rather than estimating each com-
ponent directly, as would be done if treating each as a fixed factor, the
approach directly estimates the (co-)variances of the components across
a group of voxels.

Within this framework, the raw correlation coefficients between dif-
ferent patterns, therefore, reflect a specific combination of variance and
covariance terms. For example, the raw correlation between two unre-
lated sequences is given by the following:

rU
raw � covH/v

v � �	var	seqL
 � var	handL
 � ��
2
	var	seqR
 � var	handR
 � ��

2
.

Whereas the raw correlation between two sequences that are the same in
extrinsic space is as follows:

rE
raw � 	covE � covH
/v.

Thus, we can see that this raw correlation not only increases with covE,
but also with covH (i.e., hand-specific covariance). Furthermore, rE

raw and
rU

raw (and also their difference), will vary with changing levels of hand-
specific variances and noise (term v). However, none of these changes in
raw correlation have anything to do with the amount of shared information.
Hence, the size of raw correlation coefficients is difficult to interpret. Pattern
component modeling allows us to calculate correlation coefficients that are
not influenced by noise and the common activation components, simply by
using the direct variance estimates from the model:

rE � covE/�var	seqL
var	seqR
.

This correlation coefficient, therefore, reflects the degree to which se-
quential information was shared between sequences on both hands that
matched in extrinsic coordinates (and an equivalent correlation coeffi-
cient was calculated for intrinsic pairs). Because this correlation estimate
could become unstable when the denominator tended to zero, we regu-
larized it by setting the variance estimate of each hand for this calculation
to 0.5% of the noise if it fell below this limit.

Surface-based analysis. To visualize the distribution of sequence repre-
sentations across the cortical surface, we used FreeSurfer (Dale, 1999).
This program permits the extraction of the white-matter gray-matter
surface and pial surface from the anatomical image. After the surfaces
were obtained, they were inflated to a sphere and morphed to fit to a
group template based on the sulcal depth and local surface curvature
information (Fischl et al., 1999). All hemispheres were then resampled
onto a regular grid containing 163,842 vertices. Left and right hemi-
spheres were morphed to the same mirror-symmetric template, allowing
us to easily mirror functional maps for analyses that were combined
across hands.

Multivariate analyses (both classification and pattern-component
modeling) were performed using a surface-based searchlight (Oosterhof
et al., 2011). For each vertex, this method defined a sphere on the cortical
surface and selected all voxels between pial and white-gray surfaces. The
radius of the surface was adjusted such that exactly 160 voxels were
contained in each searchlight, resulting in an average searchlight radius
of 11.1 mm. Multivariate analysis was conducted on the selected group of
voxels, and the integrated result was assigned to the center node. By
covering all possible vertices, a full surface map of information content
could be constructed.

Statistical tests on the surface were conducted using an uncorrected
threshold of t(13) � 3.01, p � 0.005, and family-wise error was controlled
by calculating the critical size of the largest superthreshold cluster that

would be expected by chance, using Gaussian field theory as imple-
mented in the fmristat package (Worsley et al., 1996). Results were dis-
played using the 3D-visualization software Caret (Van Essen et al., 2001).

ROI. We defined six anatomical regions of interest symmetrically in
both hemispheres. These ROIs were identical to those used in our previ-
ous work (Wiestler and Diedrichsen, 2013). We based regions on a cyto-
architectonic atlas aligned to the FreeSurfer atlas surface (Fischl et al.,
2008). The hand region of primary motor cortex (M1) was defined as
Brodman area (BA) 4, 2.5 cm above and below the hand knob (Yousry et
al., 1997). Primary somatosensory cortex (S1) was defined by BA 2, 3, and
1, again 2.5 cm above and below the hand knob. PMd was defined as the
lateral aspect of BA 6, superior to the middle frontal gyrus. The supple-
mentary motor areas (SMA/pre-SMA) comprised the medial aspect of
BA6. Finally, the posterior superior parietal area was subdivided into an
ROI including all areas medial to the fundus of the intraparietal sulcus
(IPS) and the regions of the occipitoparietal junction (OPJ). All regions
were defined on the symmetric group template and then projected into
the individual data space via the individual surface.

To analyze ROI data, we submitted the data from each of the six ROIs
to a repeated-measures ANOVA with the factors “hemisphere” (left vs
right) and “hand” (contralateral vs ipsilateral). All tests were Bonferroni-
corrected for the number of ROIs tested (critical p � 0.05/6). Unless
otherwise reported, we used all voxels present in each ROI. For the anal-
ysis of training effects, however, we restricted all multivariate analyses to
the 220 most activated voxels of each ROI. For this selection, the activity
was averaged across sequences and across hands. Although this pro-
cedure restricted the analysis to the most functionally involved sub-
region in each ROI, it was not sensitive to any difference between
sequences and hence did not bias the multivariate measures on which
we drew inferences.

Results
Behavioral results
Participants underwent training for 4 d with either left or right
hand. During pre- and post-test, they were tested on four trained
sequences, as well as eight untrained sequences. ET (Fig. 2), the
time from first finger press to last finger release, was reduced for
trained sequences by 1130 ms (�181 ms) from pre- to post-test,
without significant changes in error rate (t(13) � �0.249, p �
0.807). For untrained sequences, participants showed a 628 ms
(�159 ms) improvement. This reduction in ET was significantly
smaller than that for the trained sequences, as indicated by a
significant day (pretest vs posttest) � sequence type (trained vs
untrained) interaction (F(1,12) � 35.142, p � 0.0001). Thus, a
substantial part of the learned skill was sequence-specific.

To investigate the degree to which the acquired skill was
effector-independent, participants were also tested on the un-
trained hand during pre- and post-test. Each untrained hand
sequence was the same as one of the trained sequences in extrinsic
space (same letters on the screen), and the same as a different
trained sequence in intrinsic space (same sequences of muscle
commands). Therefore, for behavioral analysis, our design did
not allow the distinction between extrinsic and intrinsic transfer,
as performance improvements could result from both. However,
by also testing the untrained hand on a set of eight untrained
sequences, we could assess performance benefit caused by the
combination of extrinsic and intrinsic intermanual transfer.

We observed a substantial decrease in ET for the untrained
sequences performed with the untrained hand. Although some of
this reduction may indicate some learning of general task param-
eters, most of this drop can be explained by the fact that the
repeated (pre- and post-) testing of the untrained hand induced
learning (Waters-Metenier et al., 2014). Importantly, however,
the reduction in ET on the untrained hand was larger for trained
than untrained sequences; the day � sequence type interaction
was significant; F(1,12) � 12.221, p � 0.0044. This effect did not
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interact with the factor training cohort;
F(1,12) � 0.107, p � 0.7496. Thus, left and
right hand-trained cohorts showed
similar sequence-specific transfer to the
untrained hand. In summary, our behav-
ioral results indicate that training led to
the development of both effector-
dependent and effector-independent
sequence representations, with the lat-
ter promoting the performance of the
untrained hand.

Overlap of activation and
representation for the left and
right hands
To determine the locus of these effector-
independent representations, we com-
bined data from left and right hand-
trained participants by averaging left and
right hemispheres, therefore also combin-
ing data from the trained and untrained
hand. In the last section of the Results, we
consider how the side of training influ-
enced neural sequence representations.

One may hypothesize that an effector-
independent representation should be ac-
tivated by both the left and the right hand. The average
percentage BOLD signal compared with rest is shown in Figure
3a. In ipsilateral M1 and S1, we observed suppression of the
BOLD signal below resting baseline, whereas all other regions
showed clear evidence for bilateral activity. In general, however,
activity was larger for movements of the contralateral hand. To
test individual areas, we analyzed the data for six symmetrically
defined ROIs using a hemisphere (left vs right) � hand (ipsilat-
eral vs contralateral) repeated-measures ANOVA. For all regions,
the effect of hand was significant (all F(1,13) � 13.435, p � 0.0029;
Fig. 4a). Consistent with previous results, (Kim et al., 1993; Ver-
stynen et al., 2005), we also noted that ipsilateral activity was
higher during left hand movements in the left hemisphere than
for right hand movements in the right hemisphere. This effect
was significant for M1 (t(13) � 2.695, p � 0.018), and for S1 (t(13) �
3.527, p � 0.004), even after correcting for the number of ROIs
tested.

An effector-independent representation should not only be
activated for both hands, but also should represent sequential
aspects of left and right hand movements. The existence of a
sequence representation can be manifested as slightly different
activation patterns for different sequences (Wiestler and
Diedrichsen, 2013). To test for significant pattern differences, we
used a classification approach (see Materials and Methods). As
can be seen in Figure 3b, sequences could be successfully classified
from a set of motor-related areas, including sensory-motor cor-
tex, premotor and supplementary motor cortex, and superior
parietal cortex. These regions were significant for both left and
right hands when correcting for multiple comparisons across the
cortex (p � 0.05, uncorrected threshold p � 0.001, cluster
threshold 141 mm 2). In all six ROIs (Fig. 4b) classification accu-
racy was significantly better than chance (all F(1,13) � 12.807, p �
0.0034).

However, above-chance classification accuracy could also reflect
subtle behavioral differences between sequences, rather than a real
sequential representation. Although we endeavored to match the
four sequences of each hand in terms of execution time, error rate

and peak forces, we cannot exclude the possibility that the classi-
fier picked up subtle behavioral differences between the se-
quences in each participant. Although the differences between
the four sequences (as measured by the between-sequence SD;
Table 1) were modest, we could classify sequences based on these
behavioral variables alone, with classification accuracy for all
variables together reaching 44% for the untrained hand (classifi-
cation accuracy; Table 1). However, there was no significant cor-
relation between the classification accuracy based on behavioral
variables and the classification accuracy based on neural activity
patterns, neither in our original 14 participants (r � 0.393, p �
0.164, for all 6 ROIs), nor in the full set of all 42 participants (r �
0.165, p � 0.298). Moreover, because each sequence execution
was relatively fast, and because we averaged the BOLD signal
changes over three repeats of the same sequence (10.88 s), it is
unlikely that the classifier picked up on differences in the tempo-
ral activation profile (Wiestler and Diedrichsen, 2013). Thus, our
results can indeed be taken to reveal different spatial patterns of
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Table 1. Behavioral performance during fMRI acquisition

Trained hand Untrained hand

Mean
Execution time (s) 1.39 (0.03) 1.44 (0.05)
Error rate (%) 13.76 (2.36) 15.43 (2.03)
Force (N) 5.99 (0.34) 5.69 (0.26)

SD between sequences
Execution time (s) 0.07 (0.01) 0.09 (0.01)
Error rate (%) 6.97 (1.06) 7.75 (1.27)
Force (N) 0.31 (0.04) 0.33 (0.04)

Classification accuracy (%)
Execution time 41.85 (3.52) 43.97 (3.28)
Error rate 29.32 (2.37) 33.93 (3.00)
Force 40.91 (3.58) 41.29 (3.55)
All variables 42.97 (3.68) 44.42 (3.26)

Table shows mean (SE) across participants of the right and left hand-trained cohorts. To gage systematic differences
between the sequences within each participant, we also present the average SD between the four sequences and the
average classification accuracy based only on this behavioral parameter. The bottom row shows classification accu-
racy for all three behavioral parameters combined.
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activation (i.e., representations) in a range
of motor/premotor areas for the four se-
quences of each hand.

From Figure 3b, it is also apparent that
sequence representations for the two
hands overlap greatly. In the posterior pa-
rietal regions and SMA, no difference in
the strength of representation in ipsilat-
eral and contralateral hand was found.
Thus, the sequence representation in
these regions appeared to be equally
strong for both hands. In contrast, M1
(F(1,13) � 16.22, p � 0.0014), S1 (F(1,13) �
21.88, p � 0.0004), and PMd (F(1,13) �
9.96, p � 0.008), exhibited higher accura-
cies for contralateral compared with ipsi-
lateral hand. However, even these regions
clearly encoded ipsilateral sequences (all
t(13) � 4.465, p � 0.001). Thus, even pri-
mary sensory and motor cortex showed a
significant ipsilateral representation.

The existence of ipsilateral representa-
tions in M1 and S1 appears to contradict
the finding that these regions were, on av-
erage, only activated by movements of the
contralateral hand. To test whether repre-
sentations of ipsilateral sequences were
restricted to the subset of voxels activated
by ipsilateral movements, we split the
voxels in each M1 and S1 ROI into three
equal groups depending on their level of
ipsilateral hand activation (Fig. 4c). We
then repeated the classification analysis
within each of these sets of voxels sepa-
rately. An ANOVA revealed that classifica-
tion accuracy was higher for activated voxels
(F(2,26) � 7.740, p � 0.0023) and that this
effect did not differ between regions
(F(2,26) � 0.091, p � 0.91). Importantly,
however, even the deactivated sets of vox-
els exhibited above-chance classification
accuracy in S1 (t(13) � 7.168, p � 7.28 �
10�06) and M1 (t(13) � 3.423, p �
0.0045). Thus, even regions of primary
sensory and motor cortices that were de-
activated relative to rest showed a repre-
sentation of a sequence executed with the
ipsilateral hand. These findings are paral-
lel to our observation of encoding of sin-
gle finger movements (Diedrichsen et al.,
2013), and indicate that ipsilateral
sensory-motor cortex, below a global sup-
pression, exhibits patterns of relative acti-
vation and deactivation that reflect the
fine-grained details of the ipsilateral
movement.

Coordinate frame of effector-
independent representations
Our previous analysis showed sequence
encoding for both hands across the hier-
archy of cortical motor areas, even in pri-
mary sensory and motor regions. For
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these representations to be truly effector-
independent, however, the region should
be in a similar neural state when the same
sequence is performed with the left or
right hand (Gallivan et al., 2013). Other-
wise, sequential representations acquired
with one hand could not benefit the pro-
duction of the same sequence with the
other. Therefore, the activation pattern
when the left hand performs sequence A
should be more similar to the activation
pattern when the right hand performs the
same sequence, relative to when the right
hand performs sequence B.

This correspondence analysis also al-
lowed us to determine the coordinate
frame of the representation. Left and right
hand sequences can correspond to each
other either in extrinsic or intrinsic coor-
dinates (Fig. 1c). Therefore, if a region
represented sequences for both hands in
extrinsic coordinates, the patterns for the
four extrinsic pairs (e.g., AL and AR; Fig.
1d) should be more correlated than for
unrelated pairs (e.g., AL and BR). Con-
versely, if the region represented the se-
quence in intrinsic coordinates, the
patterns for intrinsic pairs (e.g., AL and
A�R) should correlate more with each
other than those of unrelated pairs.

Raw correlations are, however, hard to
interpret, as they are influenced by noise
level (which decreases correlations), and
by the amount of common activation pat-
tern (which increases correlations, but de-
creases differences between correlations).
Therefore, we used pattern-component
modeling (Diedrichsen et al., 2011) to de-
compose the patterns in each region into
general (hand) and sequence-specific
components (seq; Fig. 5a; see Materials
and Methods).

Figure 5b shows the estimate of the sequence-specific compo-
nents in a cross-section of the cortical surface (indicated as a
white dotted line on the left hemisphere in Fig. 5c, but averaged
over hemispheres), running from rostral PMd to the caudal end
of the OPJ (Culham and Valyear, 2006). The sequence-specific
component for the contralateral and ipsilateral sequence showed
a distribution similar to what was obtained for classification ac-
curacy maps (Fig. 3b): rostral PMd, IPS, and OPJ represented a
sequence from either hand equally well, whereas caudal PMd,
M1, and S1 exhibited better encoding of the contralateral hand
sequence.

Importantly, we could now estimate the correlation between
the two sequence-specific components; i.e., what proportion of the
informative, sequence-specific pattern was shared between the
two hands. Because the baseline correlation between unrelated
left and right-hand sequence is captured by the general (i.e.,
not sequence specific) covariance covH, these terms encapsu-
late the increased similarity between sequences that match in
extrinsic (covE) and intrinsic (covI) space. The estimated cova-
riances were then normalized by the strength of the sequence-
specific components for the left and right hand, effectively

calculating a corrected correlation coefficient (see Materials
and Methods).

In PMd (Fig. 5b,c), pairs of sequences that were matched in
extrinsic space clearly correlated higher with each other than un-
related pairs of sequences. We assessed the statistical significance
using both ROI and surface-based analysis. In the ROI analysis
(Fig. 5d), PMd showed extrinsic correlations that were signifi-
cantly different from zero (F(1,13) � 9.906, p � 0.0065). This was
also clear in the surface-based analysis, in which the two largest
significant clusters were located in left and right PMd (Table 2).
Collectively, these findings demonstrate that PMd comprises an
effector-independent sequence representation in extrinsic space.
The other two clusters with significant extrinsic correlations were
located in PMv and the mouth area of M1, and in the rostral
cingulate zone, an area associated with movement preparation
(Table 2; Picard and Strick, 2001). Representations in both these
regions are possibly related to subvocal rehearsal of the number
string.

In contrast, we found evidence for a common representation
in intrinsic coordinates in M1 and S1 (Romei et al., 2009; Orban
de Xivry et al., 2011), where the intrinsic correlations were signif-
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icantly larger than zero (S1: F(1,13) � 12.846, p � 0.0033; M1:
F(1,13) � 14.499, p � 0.0022). In the surface-based analysis (Table
2), we found a significant cluster in right M1 and S1. A similar
cluster in the left hemisphere failed to reach significance. This was
likely due to lack of statistical power, as in the ROI analysis, no
difference between hemispheres was found (both F(1,13) � 1.257,
p � 0.283). Therefore, S1 and M1 showed similar patterns of
activity during execution of mirror-symmetric sequences with
either hand. Corrected intrinsic correlations were, on average,
r � 0.33 (�0.09). Because these correlations were corrected for
noise, they would have been close to 1, if the informative part
of the patterns for the left hand and right hand sequences had
been identical. Therefore, our results also imply that a sub-
stantial part of sequence-specific encoding in these areas was
effector-dependent.

Before concluding that the motor system has effector-
independent sequence representations in intrinsic coordinates,
we needed to consider the alternative hypothesis that participants
involuntarily mirrored the sequence with their passive hand dur-
ing imaging. Because mirror-movements in normal individuals
are usually subthreshold (Cincotta and Ziemann, 2008), we used
a sensitive technique to measure the strength of mirroring (Ar-
matas et al., 1994): we required participants to preactivate the
muscles of the passive hand by exerting gentle pressure onto the
keyboard with all 10 fingers at all times. The average recorded
force on the passive fingers was 0.55 N, and we observed small
fluctuations with a SD of 0.027 N (�0.0025 N) around this mean.
Although the majority of these fluctuations was random, the
force pattern on the two hands correlated with r � 0.08 (�0.015)
across fingers and time points. Thus, although we could reveal a
slight tendency for mirror activity at the muscle level, it was much
weaker than the correlation between intrinsic pairs observed in
the neocortex. Furthermore, the size of the peripheral mirror-
correlation was not related to the strength of the cortical mirror
correlation (r � �0.086, p � 0.585), such that even the subset
of participants that did not show any evidence of mirroring
exhibited clear intrinsic correlation in primary sensory and
motor cortex.

In PMd, we found evidence for an overlap of coordinate sys-
tems: significantly positive correlations were observed for se-
quences that matched in extrinsic space, (F(1,13) � 9.906, p �
0.0065), and in intrinsic space (F(1,13) � 10.543, p � 0.0064). The
coexistence of two coordinate frames (Cisek et al., 2003) in PMd
was not an artifact of the within-hand correlation: within each
hand, related pairs of sequences (e.g., AR and AR�) did not corre-

late more with each other than unrelated pairs (AR and BR; t(13) �
0.597, p � 0.561). Thus, although previous results (Cisek et al.,
2003; Gallivan et al., 2013) have shown that PMd contains
effector-independent representations of actions, we show here
for the first time that this occurs simultaneously in two different
coordinate systems.

Similarly, the parietal cortex appeared to have common cod-
ing in intrinsic, and possibly also extrinsic coordinates. Both IPS
and OPJ showed a tendency for intrinsic encoding (nonsignifi-
cant if measured against the Bonferroni-corrected value of p �
0.05/6; F(1,13) � 5.759, p � 0.0321 and F(1,13) � 4.919, p � 0.045).
The surface-based analysis showed a significant cluster of intrin-
sic correlation in the right IPS (Table 1). The larger sample that
also included the 28 tDCS participants, however, confirmed intrinsic
encoding in the IPS (F(1,41) � 44.626, p � 0.0001), as well as
intrinsic (F(1,41) � 29.65, p � 0.0001) and extrinsic (F(1,41) �
15.075, p � 0.0004) encoding in the OPJ.

No common encoding for the two hands was found in SMA/
pre-SMA for intrinsic (F(1,13) � 0.013, p � 0.911) or extrinsic
encoding (F(1,13) � 0.035, p � 0.854). However, classification
accuracies were substantially lower here than in the lateral pre-
motor regions, leading to reduced power to detect sequence-
specific correlations.

Influence of training side
Does the location of effector-independent representation depend
on how the skill was acquired? We hypothesized that the hemi-
sphere contralateral to the trained hand would obtain a stronger
representation of the sequence, which could then be accessed by
the untrained hand. To test this idea, we averaged the estimated
variance (strength) of the sequence-specific pattern component
over both hands and compared them between the “trained”
hemisphere (contralateral to trained hand) and the “untrained” hemi-
sphere (ipsilateral to trained hand).

We discovered that (averaged over contra- and ipsilateral hands)
the left hand-trained cohort had a better sequence-related represen-
tation in right PMd, whereas the right hand-trained cohort had a
better representation in left PMd (Fig. 6, top row; F(1,13) � 12.06,
p � 0.0041). This contralateral bias was confirmed in the larger
sample of 42 participants for M1 (F(1,41) � 9.237, p � 0.0041),
and PMd (F(1,41) � 18.532, p � 0.0001). The correlation in in-
trinsic coordinates exhibited similar training-dependent lateral-
ization (Fig. 6, bottom row). The intrinsic correlation tended to
be larger in the trained compared with the untrained hemisphere
in PMd (F(1,13) � 6.032, p � 0.0289) and in IPS (F(1,13) � 6.895,
p � 0.0210). No such differences were found for the extrinsic
correlation.

In sum, the voxel activity patterns in the hemisphere con-
tralateral to the trained hand showed, regardless of the hand that
executed the sequence, higher sequence-specific variance. This
suggests that the effector-independent representation was laid
down preferentially in the hemisphere that was active during
training, and was subsequently called upon when executing the
sequence with the untrained hand.

Discussion
For any goal-directed action, the motor system translates extrin-
sically defined goals into muscle coordinates. When playing the
piano, the extrinsic goal is defined by the sequence of notes and
the corresponding spatial locations of the keys, and the intrinsic
representation consists of the complex pattern of muscle activity
needed to produce the desired tune. Although extrinsic represen-
tations are by definition effector-independent, the required mus-

Table 2. Surface-based analysis of extrinsic and intrinsic correlations, corrected for the
baseline correlation between unrelated sequences (see Materials and methods)

Region
Area
(mm 2)

Peak
value
t (13)

P
(clust)

MNI coordinates

x y z

Extrinsic correlation �0
L PMd 864 5.11 �0.001 �23 �3 43
R PMd 688 4.32 0.001 22 �13 47
L PMv / M1 679 6.36 �0.001 �60 �15 14
L cingulate 380 4.05 0.024 �10 13 37

Intrinsic correlation �0
R M1 and S1 1249 5.26 �0.001 27 �23 56
R IPS 1000 6.73 �0.001 16 �44 67
R PMd 389 4.84 0.038 20 �13 57

Between-subject analysis with uncorrected height threshold set to t(13) � 3.01, p � 0.005. Area indicates the
superthreshold size of the statistical cluster, t(13) gives the maximal t value. P (clust) is the probability of a cluster of
this size or larger occurring by random chance, corrected to achieve a family-wise error of p�0.05 across the cortical
surface for an estimated smoothness of FWHM � 16.8 mm (Worsley et al., 1996).
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cle activity depends on whether the tune is played with the left or
right hand. Therefore, intrinsic representations have been hy-
pothesized to be effector-dependent (Fig. 1a; Hikosaka et al.,
2002). In this view, only learned extrinsic representations could
lead to performance improvements on the untrained hand.

We used MVPA to visualize extrinsic and intrinsic sequence
representations in the human neocortex for the first time. We
achieved this by correlating activity patterns for left and right
hand sequences that were the same in either extrinsic or intrinsic
references frames. We found evidence for extrinsic sequence
encoding especially in PMd. This is consistent with studies of
reaching movements, which have indicated that neurons in
premotor cortices are tuned more clearly for the spatial direc-
tion of movement than intrinsic variables, such as joint angles
or forces (Crammond and Kalaska, 1989, 1996, 2000; Cisek et
al., 2003).

Although we have clearly demonstrated the existence of ex-
trinsic representations, our experiment, unfortunately, does not
reveal their exact nature. One obvious candidate for extrinsic
coding is the sequence of spatial positions on the keyboard (Keele
et al., 1995), or a more abstract stimulus–response code (Wise
and Murray, 2000). However, patterns in PMd may have also
represented the imperative cue (the string of digits). Although we
presented the digits only very briefly during a short announce-
ment phase and not during sequence execution, we also observed
above-chance classification accuracy in extra-striate areas, such
that this possibility cannot be fully excluded. Furthermore, PMd
may have also represented the sequence in terms of a subvocal
phonological code (Hartwigsen et al., 2013), although given their
functional specialization this is a more likely explanation for the
significant extrinsic correlations in PMv and rostral cingulate
zone (Picard and Strick, 2001).

We also found widespread effector-independent activation
patterns that were coded in intrinsic coordinates; i.e., activity
patterns that were similar for two mirror-symmetric sequences.
This widespread mirroring is surprising, as intrinsic representa-
tions are commonly thought to be effector-dependent and not
shared across the two limbs (Hikosaka et al., 2002). These mir-
rored representations were even found in ipsilateral primary sen-
sory and motor cortices, which exhibited reduced BOLD signal
relative to rest. This is consistent with previous findings, which
showed similar mirrored representations for single finger move-
ments (Diedrichsen et al., 2013). Because we carefully monitored
the forces produced by the ipsilateral hand, however, we can be
relatively confident that these patterns did not rely on overt mir-
ror activity.

PMd exhibited a gradual transition between coding in extrin-
sic and intrinsic coordinate frames. Although the overlap may
partly reflect the limited spatial resolution of fMRI and the mul-
tivariate searchlight analysis, this finding is consistent with the
observation of a mixture of intrinsic and extrinsic reference
frames in premotor cortex during arm movements (Wu and Hat-
sopoulos, 2007). This mixture makes PMd a probable substrate
for the coordinate transformation from spatial goals to joint
movements.

A similar mixture of extrinsic and intrinsic codes was also
observed in OPJ. Along the IPS, however, intrinsic correlations
dominated; a slightly surprising result given the functional im-
portance of these regions for movement planning and control of
attention in spatial coordinates (Bisley and Goldberg, 2010). This
raises the possibility that some of the intrinsic correlations were
not due to coding in a muscle-centered references frame, but due
to a mirror-symmetric spatial encoding of external locations.

In contrast, no evidence for shared sequence representations
was found in SMA. Although activity patterns here reflected both
left and right hand sequences, we did not find a significant cor-
respondence between these patterns in either intrinsic or extrin-
sic coordinates. This appears to contradict findings that
disruption of SMA reduces intermanual transfer (Perez et al.,
2007a). The failure to find strong correlates of intermanual rep-
resentations in SMA may partly be due to a power issue, as overall
classification accuracy was substantially lower here than for lat-
eral motor areas (Wiestler and Diedrichsen, 2013). This may in-
dicate that representations in SMA are organized spatially on a
finer grain than those in dorsal premotor cortex, making them
less amenable to detection using fMRI.

What is the functional relevance of these effector-independent
representations? One of their advantages is that motor skills
learned with one hand can also be executed with the other hand.
Indeed, our sequence-learning task showed a substantial amount
of intermanual transfer (Korman et al., 2003; Panzer et al., 2009;
Gruetzmacher et al., 2011). A skill like playing the piano would
clearly benefit from transfer in extrinsic coordinates, such that
the same tune can be played with either hand. Other skills, such a
grating cheese or swinging a baseball bat, involve objects that are
mirror symmetric, and hence would benefit from transfer in in-
trinsic coordinates. Our data show that the motor system has
effector-independent representations in both extrinsic and in-
trinsic coordinates, which could support transfer in either refer-
ence frame (Dizio and Lackner, 1995; Criscimagna-Hemminger
et al., 2003; Wang and Sainburg, 2004; Ahmed et al., 2008; White
and Diedrichsen, 2008).

However, what can our data reveal about the mechanism
through which intermanual transfer occurs? Theories of inter-
manual transfer can be divided into two classes (Lee et al., 2010):
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Figure 6. Sequence representation is stronger in the hemisphere contralateral to the trained
hand. A, Strength of sequence-specific pattern components in the hemisphere contralateral to
the trained hand (trained hemisphere) compared with the hemisphere ipsilateral to the trained
hand (untrained hemisphere). Variance is expressed as a percentage of the noise component. B,
Size of intrinsic correlation. All results are averaged over hands and training cohorts. Significant
differences indicated by: **p � 0.0086, *p � 0.05.
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“bilateral activation models” propose that unilateral motor train-
ing activates the contralateral cortex, but also spreads to the ipsi-
lateral hemisphere, and hence also causes learning in motor areas
that subserve the untrained hand. Contrastingly, “bilateral ac-
cess” models state that learning occurs mostly in the hemisphere
contralateral to the trained hand. These representations are then
called upon when the untrained, ipsilateral hand performs the
task (Parlow and Dewey, 1991). Our data are consistent with both
views. However, our findings also suggest that an artificial di-
chotomy between bilateral activation and bilateral access models
may not necessarily be helpful.

It is clear from our representational analysis that during the
execution of unilateral movement, activation patterns in the ip-
silateral hemisphere reflect specific features of the on-going
movement (Diedrichsen et al., 2013). This is even the case when
the sequence is performed with the trained hand, such that these
activation patterns are unlikely to reflect bilateral access. Further-
more, fMRI studies of sequence learning have shown that, during
unilateral training, changes in secondary motor areas can be
observed bilaterally (Hardwick et al., 2013; Wiestler and Diedrich-
sen, 2013). Neurophysiological measures, such as short intracor-
tical inhibition are reduced bilaterally (Perez et al., 2007b; Camus
et al., 2009), possibly indicating reduction of synaptic efficiency
in GABAergic interneurons. Finally, rTMS disruption of ipsilat-
eral M1 during or immediately after training reduces the amount
of intermanual transfer (Perez et al., 2007a; Romei et al., 2009;
Lee et al., 2010). These data suggest that movement-specific acti-
vation patterns in the ipsilateral hemisphere do induce some
learning, which then may support the execution of the same se-
quence with the other hand.

Our data, however, also provides some indication that se-
quence representations are preferentially laid down in the hemi-
sphere contralateral to the trained hand, which then are
subsequently accessed by the untrained hand through callosal
communication (Parlow and Dewey, 1991). The strength of the
measured sequence representations (averaged over trained and
untrained hands) was found to be stronger in the hemisphere
contralateral to the trained hand. This finding was mostly driven
by common representations in an intrinsic reference frame; that
is, sequence-specific representations that were activated during
the execution of the mirror-reversed sequence with the untrained
hand.

The ubiquity of such shared representations across the motor
hierarchy, both in intrinsic and extrinsic coordinates, indicates
that the distinction between these two models of transfer may
ultimately not be illuminating. It is possible that the use of the
word “transfer” as a verb may have misled many of us to view
intermanual transfer as a process distinct from unimanual sequence
learning or sequence production. Under this assumption, it would
then indeed be meaningful to ask whether this transfer “occurs”
during encoding or during retrieval of the motor memory.

The widespread nature of effector-independent representa-
tions, as uncovered here, suggests an alternative view: rather than
being conceived as an additional process, intermanual transfer
should be considered an emergent property of a highly bilaterally
organized motor system. In this view, transfer does not occur
during encoding or retrieval; indeed, it does not occur at all.
Rather, it is a natural consequence of motor areas that are in a
similar activation state when the same sequence is produced with
the left or right hand. Our results provide the first neural evidence
that such representations not only exist on an a relatively abstract
level that encodes sequences in an extrinsic reference frame

(Hikosaka et al., 2002), but also in a movement-related intrinsic
reference frame in primary sensory-motor areas.
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