7 research outputs found

    Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Due to MTMR2 Mutations and Implications in Membrane Trafficking

    Get PDF
    Charcot-Marie-Tooth type 4 (CMT4) is an autosomal recessive severe form of neuropathy with genetic heterogeneity. CMT4B1 is caused by mutations in the myotubularin-related 2 (MTMR2) gene and as a member of the myotubularin family, the MTMR2 protein is crucial for the modulation of membrane trafficking. To enable future clinical trials, we performed a detailed review of the published cases with MTMR2 mutations and describe four novel cases identified through whole-exome sequencing (WES). The four unrelated families harbor novel homozygous mutations in MTMR2 (NM_016156, Family 1: c.1490dupC; p.Phe498IlefsTer2; Family 2: c.1479+1G>A; Family 3: c.1090C>T; p.Arg364Ter; Family 4: c.883C>T; p.Arg295Ter) and present with CMT4B1-related severe early-onset motor and sensory neuropathy, generalized muscle atrophy, facial and bulbar weakness, and pes cavus deformity. The clinical description of the new mutations reported here overlap with previously reported CMT4B1 phenotypes caused by mutations in the phosphatase domain of MTMR2, suggesting that nonsense MTMR2 mutations, which are predicted to result in loss or disruption of the phosphatase domain, are associated with a severe phenotype and loss of independent ambulation by the early twenties. Whereas the few reported missense mutations and also those truncating mutations occurring at the C-terminus after the phosphatase domain cause a rather mild phenotype and patients were still ambulatory above the age 30 years. Charcot-Marie-Tooth neuropathy and Centronuclear Myopathy causing mutations have been shown to occur in proteins involved in membrane remodeling and trafficking pathway mediated by phosphoinositides. Earlier studies have showing the rescue of MTM1 myopathy by MTMR2 overexpression, emphasize the importance of maintaining the phosphoinositides equilibrium and highlight a potential compensatory mechanism amongst members of this pathway. This proved that the regulation of expression of these proteins involved in the membrane remodeling pathway may compensate each other's loss- or gain-of-function mutations by restoring the phosphoinositides equilibrium. This provides a potential therapeutic strategy for neuromuscular diseases resulting from mutations in the membrane remodeling pathway

    SACS variants are a relevant cause of autosomal recessive hereditary motor and sensory neuropathy.

    No full text
    Mutations in the SACS gene have been initially reported in a rare autosomal recessive cerebellar ataxia syndrome featuring prominent cerebellar atrophy, spasticity and peripheral neuropathy as well as retinal abnormalities in some cases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, ARSACS). In the past few years, the phenotypic spectrum has broadened, mainly owing to the availability and application of high-throughput genetic testing methods. We identified nine patients (three sib pairs, three singleton cases) with isolated, non-syndromic hereditary motor and sensory neuropathy (HMSN) who carried pathogenic SACS mutations, either in the homozygous or compound heterozygous state. None of the patients displayed spasticity or pyramidal signs. Ataxia, which was noted in only three patients, was consistent with a sensory ataxia. Nerve conduction and nerve biopsy studies showed mixed demyelinating and axonal neuropathy. Brain MRI scans were either normal or revealed isolated upper vermis atrophy of the cerebellum. Our findings confirm the broad clinical spectrum associated with SACS mutations, including pure polyneuropathy without characteristic clinical and brain imaging manifestations of ARSACS.This work was supported by the German Federal Ministry of Education and Research (BMBF) through the German Network for Charcot-Marie-Tooth Neuropathies (CMT-Net) (01GM1511B, 01GM1511D, 01GM1511E; to Katharina Vill, Joachim Weis, Peter Young, Wolfgang Müller-Felber and Jan Senderek) and the Fritz-Thyssen-Stiftung (Az10.15.1.021MN; to Jan Senderek)

    The genetic landscape of axonal neuropathies in the middle-aged and elderly: Focus on MME.

    No full text
    OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population
    corecore