36 research outputs found
Regulatory T Cell Induction and Retention in the Lungs Drives Suppression of Detrimental Type 2 Th Cells During Pulmonary Cryptococcal Infection
Lethal disease caused by the fungus, Cryptococcus neoformans, is a consequence of the combined failure to control pulmonary fungal replication and immunopathology caused by induced type-2 helper T (Th2) cell responses in animal models. In order to gain incites into immune regulatory networks, we examined the role of regulatory T (Treg) cells in suppression of Th2 cells, using a mouse model of experimental cryptococcosis. Upon pulmonary infection with Cryptococcus, Treg cells accumulated in the lung parenchyma independently of priming in the draining lymph node. Using peptide-MHCII molecules to identify Cryptococcus-specific Treg cells combined with genetic fate-mapping, we noted that a majority of the Treg cells found in the lungs were induced during the infection. Additionally, we found that Treg cells utilized the transcription factor, Interferon Regulatory Factor 4 (IRF4), to dampen harmful Th2 cell responses, as well as mediate chemokine retention of Treg cells in the lungs. Taken together, induction and IRF4-dependent localization of Treg cells in the lungs allow Treg cells to suppress the deleterious effects of Th2 cells during cryptococcal infection
Characterization of antifungal C-type lectin receptor expression on murine epithelial and endothelial cells in mucosal tissues
Funding Information: We thank P. Asamaphan, A. Clark, and B. Kerscher for providing NIH overexpression cell lines, S. Yamasaki for the antiāMincle antibody, the staff of the University of Aberdeen animal facility for the care for our animals, and the Iain Fraser Cytometry Centre at the University of Aberdeen for their assistance. This work was supported by funding from the Wellcome Trust (102705, 217163), the Medical Research Council Centre for Medical Mycology, and the University of Exeter (MR/N006364/2).Peer reviewedPublisher PD
Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity.
Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil's target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death
Clinical Features and Serum Biomarkers in HIV Immune Reconstitution Inflammatory Syndrome after Cryptococcal Meningitis: A Prospective Cohort Study
David Boulware and colleagues investigate clinical features in a prospective cohort with AIDS and recent cryptococcal meningitis after initiation of antiretroviral therapy to identify biomarkers for prediction and diagnosis of CM-IRIS (cryptococcal meninigitis-related immune reconstitution inflammatory syndrome)
Titan Cell Production Enhances the Virulence of Cryptococcus neoformans
ABSTRACT Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 Ī¼m in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4 Ī gpr5 Ī mutant, which has minimal titan cell production in vivo . The gpr4 Ī gpr5 Ī mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4 Ī gpr5 Ī mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression
Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection
Cryptococcus: from environmental saprophyte to global pathogen.
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development
Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome)
Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10Ā K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (PĀ =Ā 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9