4 research outputs found

    Modulation Of The Poly (Adp-Ribose) Polymerase Inhibitor Response And Dna Recombination In Breast Cancer Cells By Drugs Affecting Endogenous Wild-Type P53

    No full text
    Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono-and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrin alpha further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrin alpha downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs

    Biallelic germline BRCA1 mutations in a patient with early onset breast cancer, mild Fanconi anemia-like phenotype, and no chromosome fragility

    Get PDF
    Background Biallelic BRCA1 mutations are regarded either embryonically lethal or to cause Fanconi anemia (FA), a genomic instability syndrome characterized by bone marrow failure, developmental abnormalities, and cancer predisposition. We report biallelic BRCA1 mutations c.181T > G (p.Cys61Gly) and c.5096G > A (p.Arg1699Gln) in a woman with breast cancer diagnosed at the age of 30 years. The common European founder mutation p.Cys61Gly confers high cancer risk, whereas the deleterious p.Arg1699Gln is hypomorphic and was suggested to confer intermediate cancer risk. Methods and Results Aside from significant toxicity from chemotherapy, the patient showed mild FA-like features (e.g., short stature, microcephaly, skin hyperpigmentation). Chromosome fragility, a hallmark of FA patient cells, was not present in patient-derived peripheral blood lymphocytes. We demonstrated that the p.Arg1699Gln mutation impairs DNA double-strand break repair, elevates RAD51 foci levels at baseline, and compromises BRCA1 protein function in protecting from replication stress. Although the p.Arg1699Gln mutation compromises BRCA1 function, the residual activity of the p.Arg1699Gln allele likely prevents from chromosome fragility and a more severe FA phenotype. Conclusion Our data expand the clinical spectrum associated with biallelic BRCA1 mutations, ranging from embryonic lethality to a mild FA-like phenotype and no chromosome fragility

    ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage

    No full text
    Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATMdeficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. (C) 2017 AACR
    corecore