10 research outputs found

    Impact of formate supplementation on body weight and plasma amino acids

    Get PDF
    Current nutritional recommendations are focused on energy, fat, carbohydrate, protein and vitamins. Less attention has been paid to the nutritional demand of one-carbon units for nucleotide and methionine synthesis. Here, we investigated the impact of sodium formate supplementation as a nutritional intervention to increase the dietary intake of one-carbon units. A cohort of six female and six male mice received 125 mM of sodium formate in the drinking water for three months. A control group of another six female and six male mice was also followed up for the same period of time. Tail vein blood samples were collected once a month and profiled with a haematology analyser. At the end of the study, blood and tissues were collected for metabolomics analysis and immune cell profiling. Formate supplementation had no significant physiological effect on male mice, except for a small decrease in body weight. Formate supplementation had no significant effect on the immune cell counts during the intervention or at the end of the study in either gender. In female mice, however, the body weight and spleen wet weight were significantly increased by formate supplementation, while the blood plasma levels of amino acids were decreased. Formate supplementation also increased the frequency of bifidobacteria, a probiotic bacterium, in the stools of female mice. We conclude that formate supplementation induces physiological changes in a gender-specific manner

    Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma

    Get PDF
    MYC is implicated in the development and progression of Pancreatic cancer, yet the precise level of MYC deregulation required to contribute to tumour development has been difficult to define. We used modestly elevated expression of human MYC, driven from the Rosa26 locus, to investigate the pancreatic phenotypes arising in mice from an approximation of MYC trisomy. We show that this level of MYC alone suffices to drive pancreatic neuroendocrine tumours, and to accelerate progression of KRAS-initiated precursor lesions to metastatic pancreatic ductal adenocarcinoma. Our phenotype exposed suppression of the Type I Interferon pathway by the combined actions of MYC and KRAS and we present evidence of repressive MYC/MIZ1 complexes binding directly to the promoters of type I Interferon regulators IRF5, IRF7, STAT1 and STAT2. De-repression of Interferon regulators allows pancreatic tumour infiltration of B and NK cells, resulting in increased survival

    The duplexity of unconventional T cells in cancer

    Get PDF
    Unconventional T cells and their involvement in cancer are understudied in comparison to conventional T cells, but recent findings indicate that these cells play important roles in both cancer progression and inhibition. Here, we briefly review the dichotomous role of three unconventional T cell lineages: γδ T cells, MAIT cells and NKT cells. Studies using mouse models of cancer show how this unconventional trilogy interacts with cancer epithelial cells and other immune cell populations during tumour evolution. These reports highlight various potential avenues for therapeutic intervention that may be exploited for cancer immunotherapy

    NKG2D signaling regulates IL-17A-producing γδT cells in mice to promote cancer progression

    Get PDF
    γδT cells are unconventional T cells particularly abundant in mucosal tissues that play an important role in tissue surveillance, homeostasis and cancer. γδT cells recognize stressed cells or cancer cells through the NKG2D receptor to kill these cells and maintain normality. Contrary to the well-established anti-tumor function of these NKG2D-expressing γδT cells, we show here that, in mice, NKG2D regulates a population of pro-tumor γδT cells capable of producing IL-17A. Germline deletion of Klrk1, the gene encoding NKG2D, reduced the frequency of γδT cells in the tumor microenvironment and delayed tumor progression. We further show that blocking NKG2D reduced the capability of γδT cells to produce IL-17A in the pre-metastatic lung and that co-culture of lung T cells with NKG2D ligand-expressing tumor cells specifically increased the frequency of γδT cells. Together, these data support the hypothesis that in a tumor microenvironment where NKG2D ligands are constitutively expressed, γδT cells accumulate in an NKG2D-dependent manner and drive tumor progression by secreting pro-inflammatory cytokines, such as IL-17A

    Perinatal thymic-derived CD8αβ-expressing γδ T cells are innate IFN-γ producers that expand in IL-7R-STAT5B-driven neoplasms

    Get PDF
    The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αβ heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αβ+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R–STAT5B signaling promotes a supraphysiological accumulation of CD8αβ+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αβ+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αβ+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer

    IL-27 maintains cytotoxic Ly6C+ γδ T cells that arise from immature precursors

    No full text
    In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.</p

    beta-catenin drives butyrophilin-like molecule loss and gamma delta T cell exclusion in colon cancer

    No full text
    Intraepithelial lymphocytes (IEL) expressing y8 T-cell receptors (y8TCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immu-nosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic y8IELs. In contrast with healthy intestinal or colonic tissue, we found that y8IELs were largely absent from the micro-environment of both mouse and human tumors, and that butyr-ophilin-like (BTNL) molecules, which can critically regulate y8IEL through direct y8TCR interactions, were also downregulated in tumors. We then demonstrated that 13-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased y8IEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of 13-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant 13-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and y8 T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts y8IEL immunosurveillance and furthers cancer progression.Funding Agencies|Core Services and Advanced Technologies at the Cancer Research UK Beatson Institute; Wellcome Trust [208990/Z/17/Z]; Senior Clinical Research Fellowship [206314/Z/17/Z]; Cancer Research UK Glasgow Center [A25142]; Marie Sklodowska Curie Actions European Fellowship [GDCOLCA 800112]; Naito Foundation Grant for Research Abroad; Medical Research Council [MR/R502327/1]; Greater Glasgow and Clyde endowment [306620-01]; Cancer Research UK [FC001093]; Cancerfonden [CAN 2018/542, 21 1572 PJ]; Swedish Research Council [2021-03075]; Knut and Alice Wallenberg Foundation (Wallenberg Molecular Medicine fellow-ship award); NIH [R01DK121915, R01CA190558]; Cancer Research UK core funding at the Cancer Research UK Beatson Institute [A17196, A31287]</p
    corecore