911 research outputs found
Lyapunov instability of fluids composed of rigid diatomic molecules
We study the Lyapunov instability of a two-dimensional fluid composed of
rigid diatomic molecules, with two interaction sites each, and interacting with
a WCA site-site potential. We compute full spectra of Lyapunov exponents for
such a molecular system. These exponents characterize the rate at which
neighboring trajectories diverge or converge exponentially in phase space.
Quam. These exponents characterize the rate at which neighboring trajectories
diverge or converge exponentially in phase space. Qualitative different degrees
of freedom -- such as rotation and translation -- affect the Lyapunov spectrum
differently. We study this phenomenon by systematically varying the molecular
shape and the density. We define and evaluate ``rotation numbers'' measuring
the time averaged modulus of the angular velocities for vectors connecting
perturbed satellite trajectories with an unperturbed reference trajectory in
phase space. For reasons of comparison, various time correlation functions for
translation and rotation are computed. The relative dynamics of perturbed
trajectories is also studied in certain subspaces of the phase space associated
with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in
Phys. Rev.
分娩第1期におけるアロママッサージの効果 : 初産婦6名経産婦4名に実施して
The article of record as published may be located at http://dx.doi.org/10.2514/6.2008-7012AIAA Guidance, Navigation and Control Conference and Exhibit ; Paper no. AIAA-2008-7012, Honolulu, Hawaii, 2008Minimum-time solutions are developed for the rest-to-rest reorientation of an asymmetric rigid-body. The optimality of the open-loop solutions are demonstrated by application of Pontryagin's Minimum Principle. Bellman's theory is used to further demonstrate optimality while extending open-loop theory to real-time application. The open-loop time optimal control is, next, used to construct the closed-loop Caratheodory- control solution for a similar maneuver. Closed-loop results presented for the system with and without parameter uncertainties verify the successful implementation of the method in practical applications
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Lived religion: Rethinking human nature in a neoliberal age
This article considers the relationship between philosophy of religion and an approach to the study of religion, which prioritises the experience of lived religion. Considering how individuals and communities live out their faith challenges some of the assumptions of analytic philosophers of religion regarding the position the philosopher should adopt when approaching the investigation of religion. If philosophy is understood principally as a means for analysing belief, it will have little space for an engagement with what it feels like to live out one’s faith
Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters
The equilibrium structures and dynamics of a nanoscale system are regulated by a complex potential energy surface (PES). This is a key target of theoretical calculations but experimentally elusive. We report the measurement of a key PES parameter for a model nanosystem: size-selected Au nanoclusters, soft-landed on amorphous silicon nitride supports. We obtain the energy difference between the most abundant structural isomers of magic number Au561 clusters, the decahedron and face-centred-cubic (fcc) structures, from the equilibrium proportions of the isomers. These are measured by atomic-resolution scanning transmission electron microscopy, with an ultra-stable heating stage, as a function of temperature (125–500 °C). At lower temperatures (20–125 °C) the behaviour is kinetic, exhibiting down conversion of metastable decahedra into fcc structures; the higher state is repopulated at higher temperatures in equilibrium. We find the decahedron is 0.040 ± 0.020 eV higher in energy than the fcc isomer, providing a benchmark for the theoretical treatment of nanoparticles
Sensory Transduction Channel Subunits, tax-4 and tax-2, Modify Presynaptic Molecular Architecture in C. elegans
During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV) markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses
- …