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Abstract

We consider multi-antenna base stations using orthogonal frequency-division multiple access and space division
multiple access techniques to serve single-antenna users. Some users, called real-time users, have minimum rate
requirements and must be served in the current time slot while others, called non real-time users, do not have strict
timing constraints and are served on a best-effort basis. The resource allocation (RA) problem is to find the assignment
of users to subcarriers and the transmit beamforming vectors that maximize the total user rates subject to power and
minimum rate constraints. In general, this is a nonlinear and non-convex program and the zero-forcing technique
used here makes it integer as well, exact optimal solutions cannot be computed in reasonable time for realistic cases.
For this reason, we present a technique to compute both upper and lower bounds and show that these are quite
close for some realistic cases. First, we formulate the dual problem whose optimum provides an upper bound to all
feasible solutions. We then use a simple method to get a primal-feasible point starting from the dual optimal solution,
which is a lower bound on the primal optimal solution. Numerical results for several cases show that the two bounds
are close so that the dual method can be used to benchmark any heuristic used to solve this problem. As an example,
we provide numerical results showing the performance gap of the well-known weight adjustment method and show
that there is considerable room for improvement.
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1 Introduction
With the ubiquitous use of smart phones, tablets, laptops
and other devices, traffic demand on wireless access net-
works is increasing geometrically. Multi-antenna base sta-
tions using orthogonal frequency-division multiple access
(OFDMA) and space division multiple access (SDMA)
can transmit at the same time to different sets of users
on multiple subcarriers. This diversity increases the sys-
tem throughput by assigning transmitting resources to
users with good channel conditions. High data rates are
thus made possible by exploiting the degrees of freedom
of the system in time, frequency and space dimensions.
OFDMA-SDMA is also supported by WiMAX and LTE-
Advanced systems, which are the technologies currently
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being set up to implement the fourth generation (4G)
cellular networks [1,2].
Due to these increased degrees of freedom, it is criti-

cal to use a dynamic and efficient scheduling and resource
allocation (RA) mechanism that takes full advantage of all
OFDMA-SDMA transmitting resources [3]. In this mech-
anism, the scheduler selects the users that are served at
each frame and the RA algorithm allocates to these users
the transmission resources required to meet the quality of
service (QoS) requested from the upper layers.
In this article, we focus on the RA part of the prob-

lem for an OFDMA-SDMA system supporting real time
traffic with minimum rate requirements. We propose a
dual-based method to get an upper bound to all feasible
solutions. Because the dual solution is not necessarily pri-
mal feasible, we also present an algorithm to get a feasible
point from the dual solution, which is a lower bound to the
optimal primal solution. The importance of these bounds
is that they give us limits on the duality gap and we can
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use them to estimate how far the solution given by any
heuristic method is from the optimum.

1.1 State of the art
The general RA is a nonlinear, non-convex program so
that it is almost impossible to solve it directly for any real-
istic number of subcarriers, users and antennas. For this
reason, most research study focuses on developing heuris-
tic algorithms. In this context, an important question is
always how accurate are the results. For the RA problem
with rate constraints, it turns out that there are very few
results of that kind, as we shall see.
Traffic in the system can be divided into two main

groups: Delay-sensitive real time (RT) services and delay-
insensitive non real time (nRT) services. Early studies
on OFDMA systems focused on solving the RA problem
for nRT services only, where the objective is to maxi-
mize the total throughput with only power constraints and
possibly minimum BER constraints. In [4], the complete
optimization problem is divided into two sub-problems:
Selection of users for each carrier and then power alloca-
tion to these users, which are both solved by a heuristic.
A similar approach using zero-forcing (ZF) beamform-
ing is reported in [5]. The study of [4,5] does not solve
the complete optimization problem; instead, it separates
it into uncoupled subproblems that provide sub-optimal
solutions.
There is a definite need to benchmark the performance

of these heuristic algorithms. For the RA problem with
nRT traffic only, several methods have been proposed
to compute near-optimal solutions. For example, genetic
algorithms are proposed in [6], while [7-10] provide meth-
ods to compute a near-optimal solution based on dual
decomposition. In addition to providing a benchmark,
near-optimal algorithms can also lead to the design of
efficient RA methods as shown in [10], where heuristic
algorithms derived from the dual decomposition method
are proposed.
Several methods have been used to solve the RA prob-

lem for OFDMA-SDMA systems with both RT and nRT
traffic. In [11], the objective is to maximize the sum of the
user rates subject to per-user minimum rate constraints
that model the priority assigned to each user at each
frame. The optimization problem is solved approximately
for each frame by minimizing a cost function representing
the increase in power needed when increasing the num-
ber of users or the modulation order. The advantages of
this approach are that it handles user scheduling and RA
together and supports RT and nRT traffic. Its weaknesses
are that no comparison is made against a near-optimal
solution and the method used to determine user priorities
at every frame is very complex.
In [12], both RT and nRT traffic are supported. Priori-

ties are set according to the remaining deadline time for

RT users and to the difference between the achieved rate
and the desired rate required for nRT users. The user with
the highest priority is paired with the subchannel with the
highest vector norm and semi-orthogonal users are multi-
plexed on the same subchannel. Comparisons against the
algorithm of [11] show that the packet drop rate for RT
users is significantly reduced. The algorithm’s complexity
is also reduced because of the semi-orthogonality crite-
ria used to add users. However, as in [11], a performance
comparison with a near-optimal solution is not provided.
In [13], the objective is to maximize a utility function

without any hard minimum rate constraints for the RT
users. The channel quality information is added to the
utility function to favor users with good channel condi-
tions and priorities are set by increasing user weights in
the utility function. The advantage is that the per-frame
optimization problem has only a power constraint and no
rate constraints, which makes it simpler to solve. The dis-
advantage with this reactive approach is that RT users with
poor channel conditions are backlogged until their delay
is close to the deadline, increasing the average delay and
jitter.
In [14], a heuristic algorithm is proposed for the

sum rate maximization problem with proportional rates
among the user data rates, i.e., the ratio among allo-
cated user rates is predetermined. The criteria to form
user groups includes semi-orthogonality as in [12], but
also fairness through proportional rate constraints. This
method is extended to include hardminimum rates in [15]
which attempts to solve exactly the same problem we for-
mulate in Section 2. Again, there is not reported method
to evaluate the accuracy of these heuristics, except by
comparing them to each other.
Another approach is to maximize the sum rate sub-

ject to constraints on the average rate delivered to a user
[16]. However, unlike the study presented in [17], where
an optimal solution is provided for the single antenna
OFDMA RA problem with average rate constraints, the
algorithm presented in [16] is a heuristic approximation.
Note also that with average rate constraints, RT users tend
to be served when they have good channel conditions
which can create unwanted delay violations and jitter.

1.2 Article contribution and organization
None of the previous study provide a near-optimal solu-
tion to the OFDMA-SDMA RA problem with minimum
rate requirements. This is important not only as a bench-
mark for any heuristic algorithms, but also to get a bet-
ter insight into the problem and to help devise efficient
heuristics.
The main contribution of this article is a method that

provides an upper bound to the following OFDMA-
SDMA RA problem for mixed RT and nRT traffic: for a
given time slot, find the user selection and beamforming
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vectors that maximize a linear function of the users rates,
given a total transmit power constraint and minimum rate
constraints for RT users. The user weights in the linear
utility function are arbitrary and can be the result of a pri-
oritization or fairness policy by the scheduler. We solve
the RA problem by Lagrange decomposition and we show,
for small cases where we can find the optimal solution,
that the duality gap is small.
A second contribution is a simple off-line heuristic algo-

rithm to compute a feasible point based on the dual
solution. This point is a lower bound for the optimal solu-
tion. This lower bound, in conjunction with the upper
bound from the dual, can be used to limit the optimal-
ity gap in larger cases where an optimal solution is not
available.
We then study several cases where we compare the per-

formance of the upper and lower bounds. The results
show that the two bounds are tight when the number of
RT users is small and that their difference increases for
larger values but that it stays quite small. Thus, the dual
method provides a good approximation to the optimal
solution. We also compare the performance of the weight
adjustment algorithm versus the solution provided by the
two bounds. The results indicate that adjusting the user
weights to prioritize RT users can lead to significantly
sub-optimal solutions.
We describe the system and formulate the optimiza-

tion problem we want to solve in Section 2, where we
also briefly discuss a direct enumeration method to find
the optimal solution for small problems. We present in
Section 3 the dual method and two algorithms: One that
finds the dual solution (the upper bound) and the other
that finds a dual-based primal feasible solution (the lower
bound). In Section 4, we present numerical results show-
ing the accuracy of the upper and lower bounds and of
the weight adjustment algorithm for different scenarios.
Finally, we present our conclusions in Section 5 .

2 System description and problem formulation
We consider the RA problem for the downlink transmis-
sion in a MISO system with a single base station. There
are K users, some of which have RT traffic with minimum
rate requirements while the others have nRT traffic that
can be served on a best-effort basis. The BS is equipped
with M transmit antennas and each user has one receive
antenna. In this configuration, the BS can transmit in the
downlink data to different users on each subcarrier by per-
forming linear transmit beamforming precoding. At each
OFDM symbol, the BS can change the beamforming vec-
tor for each user on each subcarrier to maximize some
performance function. In this article, we assume that we
use a channel coding that reaches the channel capacity.
The data rate are in units of bits per OFDM symbol, or
equivalently bits per second per Hertz (bps/Hz).

2.1 Signal model
First, we describe the model used to compute the bit rate
received by each user. Define

s̃k,n the symbol transmitted by the BS to user k on
subcarrier n. We assume that the s̃k,n are
independently identically distributed (i.i.d)
random variables with s̃k,n ∼ CN (0, 1).

wk,n an M-component column vector representing the
beamforming vectors for user k on subcarrier n.
Unless otherwise noted, we denote w the vector
made up by the column stacking of the vectors
wk,n.

xn an M-component column vector representing the
signal sent by the array of M antennas at the BS
for each subcarrier n.

hk,n an M-component row vector representing the
channel between the M antennas at the BS and
the receive antenna at user k for each subcarrier n.

zk,n the additive white gaussian noise at the receiver
for user k on subcarrier n. The zk,n are i.i.d.
Gaussian random variables and, without loss of
generality, we assume that they have unit variance,
that is zk,n ∼ CN (0, 1).

yk,n the signal received by user k on subcarrier n.
r0k,n the rate of user k on subcarrier n in bps/Hz.

The signal vector xn is built by a linear precoding scheme
which is a linear transformation of the information sym-
bols s̃k,n:

xn =
K∑

k=1
wk,ns̃k,n. (1)

The signal received by user k on subcarrier n is then given
by

yk,n = hk,nxn + zk,n
= hk,nwk,ns̃k,n +

∑
j �=k

hk,nwj,ns̃j,n + zk,n. (2)

The second and third terms in the right-hand side of (2)
correspond to the interference and noise terms. Since the
signals and noise are Gaussian, their sum is also Gaussian
and the data rate of user k for subcarrier n is given by the
Shannon channel capacity for an additive white Gaussian
noise channel:

r0k,n (w) = log2

(
1 + |hk,nwk,n|2

1 + ∑
j �=k |hk,nwj,n|2

)
. (3)

2.2 Rate maximization problem
The general rate maximization problem corresponding to
the OFDMA-SDMA RA problem with mixed RT and nRT
traffic is to find a set of beamforming vectors wk,n that
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will maximize the weighted sum of user rates. This is lim-
ited by the total power available for the transmission at the
base station and some users with real time QoS require-
ments must receive a minimum rate. More precisely, we
assume that we know

K Number of users in the cell.
K Set of users in the cell: {1, . . . ,K}.
D A subset of K containing the users that have

minimum rate requirements. We define D = |D|.
ďk Minimum rate requirement for user K.
M Number of antennas at the BS.
N Number of subcarriers available.
P̌ Total power available at the base station for

transmitting over all channels.
ck Weight of the user rates in the objective function.

These could be computed by the scheduler to
implement prioritization or fairness.

We then want to solve the following optimization problem
to obtain the RA

max
w

N∑
n=1

K∑
k=1

ckr0k,n(w) (4)

N∑
n=1

K∑
k=1

‖wk,n‖2 ≤ P̌ (5)

N∑
n=1

r0k,n(w) ≥ ďk , ∀k ∈ D. (6)

The total transmit power is represented by the sum of the
L2 norms of the beamforming vectors in constraint (5).
The achievable rate over all subcarriers should be higher
or equal than the requiredminimum rate per user as in (6).
Problem (4–6) is a non-convex, non-linear optimiza-

tion problem. Using an exact algorithm to find a global
optimal solution is very hard considering the size of a typ-
ical problem where there can be up to a hundred users
and hundreds of sub-channels. Another option is to use
a standard non-linear program (NLP) solver to compute
a local optimal solution and use different starting points
in the hope of finding a good global solution. The prob-
lem with this approach is that (1) we don’t know how close
we are to the true optimum and (2) the technique is quite
time-consuming.
Nevertheless, we tried this approach for some small

cases and observed that most users end up with a zero
beamforming vector and only a small subset of users
actually get some rate, often no more than M. Further-
more, in accordance to what was reported for the SDMA
problem in [18], we observed that at high SNR, a so-
called zero-forcing (ZF) solution is very close to the local

optimum. This ZF solution can be easily computed by
channel diagonalization and water-filling power allocation
and is near-optimal compared to the general beamform-
ing solution in the high SNR regime. Moreover, due to
multi-user diversity, there is a good chance of finding
users with high SNR channels when the total number of
users increase. Therefore, in a multi-user Rayleigh fading
environment, the ZF beamforming technique can provide
results close to the general beamforming solution, even in
the moderate SNR regime. For these reasons, we now turn
to the so-called Zero-Forcing beamforming strategy.

2.3 Zero-forcing beamforming
In general, user k is subject to the interference from
other users which reduces its bit rate, as indicated by the
denominator in (3). Zero-forcing beamforming is a strat-
egy that completely eliminates interference from other
users. For each subcarrier n, we choose a set s of g ≤
M users which are allowed to transmit. This is called
an SDMA set. We then impose the condition that for
each user k in this set, the beamforming vector of user k
must be orthogonal to the channel vectors of all the other
users of the set. This amounts to adding the orthogonality
constraints

hk,nwj,n = 0 j �= k, j, k ∈ s (7)

and the user k data rate for subcarrier n then simplifies to:

r0k,n
(
wk,n

) = log2
(
1 + |hk,nwk,n|2

)
. (8)

With ZF beamforming, the problem is now made up of
two parts. We need to select a SDMA set s(n) for each
subcarrier n and, for each selected SDMA set, we must
compute the beamforming vectors in such a way that the
total rate received by all users is maximized. Because of
this, we need to add another set of decision variables

αk,n a binary variable that is 1, if we allow user k to
transmit on subcarrier n and zero otherwise. We
denote the collection of αk,n by the vector α .

This results in the following ZF problem

max
w,α

N∑
n=1

K∑
k=1

ckr0k,n(wk,n) (9)

N∑
n=1

K∑
k=1

‖wk,n‖2 ≤ P̌ (10)

N∑
n=1

r0k,n(wk,n) ≥ ďk , ∀k ∈ D (11)
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K∑
k=1

αk,n ≤ M, ∀n (12)

|hk,nwj,n|2 ≤ B
[
(1 − αk,n) + (1 − αj,n)

]
,

∀n, ∀k, ∀j, k �= j (13)

‖wk,n‖ ≤ Aαk,n (14)

αk,n ∈ {0, 1} , (15)

where A and B are some large positive constants. Con-
straint (12) guarantees that we do not choose more than
M users for each subcarrier, constraint (13) guarantees
that if we have chosen two users k and j, they meet the
ZF constraints and is redundant for other users, and con-
straint (14) guarantees that the beamforming vector is
zero for users that are not chosen. Problem (9–14) is a
non-linear mixed integer program (MIP) and these are
known to be very hard to solve exactly.
In this article, whenever we need to get an exact solu-

tion, we use a complete enumeration of the binary vari-
ables α satisfying the constraints (12). For each α, we then
find the beamforming vectors maximizing the utility func-
tion given the power, minimum rate and ZF constraints.
The optimal solution is the vector α that maximizes the
utility function. The problem of finding the optimal w
variables for a particular α is a relatively small non-convex
problem. Using the pseudo-inverse approach to satisfy the
ZF constraint (see Section 3.3), it can also be transformed
into an approximate convex problem and solved using a
dual algorithm similar to the one described in Section 3.4.
It would seem that the zero-forcing model is not

improving things much: We have gone from a non-convex
nonlinear program to a non-convex mixed nonlinear pro-
gram that can be solved by picking the global solution
from a large collection of small convex problems. How-
ever, as we explain in Section 3, this allows us to design an
efficient and accurate algorithm.

3 Dual-based solutionmethod
Obviously, we cannot solve Problem (9–15) fast enough
to use it in a real-time system. Not only is it NP-complete
[4] but the actual computation time becomes quickly pro-
hibitive for realistic sizes, even for off-line computations.
Still, we need to compute solutions so that we can use
them as benchmarks to evaluate the quality of real-time
heuristic approximations. We now present two off-line
solution techniques that are tractable for problems of real-
istic size based on the Lagrange relaxation of the primal.
Because Problem (9–15) is not convex, there will often be
a strictly positive duality gap at the solution of the dual.
However, if it is small enough, we can use the solution pro-
vided by the dual method as a useful benchmark to check
the accuracy of heuristic methods. Results in Section 4

show that in many cases, the duality gap is in fact less than
a few percent.
Solving the ZF problemwill require some form of search

over the αk,n variables. Note that this ranges over all sub-
sets with a number of users smaller than or equal to
M, so that the search space is going to be fairly large.
Our first transformation is thus to separate the problem
into single-subcarrier subproblems. For this, we dualize
the constraints (10) and (11) since they are the ones that
couple the subcarriers. Define the dual variables

λ Lagrange multiplier for power constraint (10).
μk Lagrange multipliers for minimum rate

constraint (11) of user K. The collection of μk is
denoted μ.

In order to simplify the derivation, we also define the dual
variables μk for all users k ∈ K. For users with no min-
imum rate requirements (k /∈ D), we have μk = 0 and
ďk = 0. In what follows, we use the standard form of
Lagrangian duality which is expressed in terms of mini-
mization with inequality constraints of the form ≤. Under
these conditions, the multipliers λ,μ ≥ 0. We get the
partial Lagrangian

L = −
N∑

n=1

K∑
k=1

ckr0k,n(wk,n) + λ

[ N∑
n=1

K∑
k=1

‖wk,n‖2 − P̌
]

+
K∑

k=1
μk

[ N∑
n=1

−r0k,n(wk,n) + ďk

]

= −λP̌ +
K∑

k=1
μkďk +

N∑
n=1

{
−

K∑
k=1

(ck + μk)r0k,n(wk,n)

+ λ

K∑
k=1

‖wk,n‖2
}

(16)

with constraints (12–15). The value of the dual function
� at some point (λ,μ) is obtained by minimizing the
Lagrange function over the primal variables

�(λ,μ) = min
w,α

L(λ,μ,w,α) (17)

and the dual problem is

max
λ,μ

�(λ,μ) (18)

λ,μ ≥ 0 (19)

which we can solve by the well known subgradient algo-
rithm [19]. From now on, we concentrate on the calcula-
tion of the subproblem (17).

3.1 Subchannel subproblem
Because of the relaxation of the carriers coupling con-
straints (10–11), the subproblems in (17) decouple by
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subcarrier since the objective (16) is separable in n and
so are constraints (12–14). Computing the dual function
then requires the solution ofN independent subproblems.
For each subcarrier n, this has the form

min
wn,αn

−
K∑

k=1
(ck + μk)r0k,n(wk,n) + λ

K∑
k=1

‖wk,n‖2 (20)

∑
k

αk,n ≤ M, (21)

∣∣hk,nwj,n
∣∣2 ≤ B

[
(1− αk,n) + (1−αj,n)

]
, ∀k, ∀j, k �= j

(22)

‖wk,n‖ ≤ Aαk,n (23)

αk,n ∈ {0, 1}
where wn is the vector made up by the column stacking of
the vectors wk,n for subcarriers n and αn denote the col-
lection of αk,n for subcarrier n. Problem (20–23) is still a
mixed NLP, albeit of a smaller size.

3.2 SDMA subproblem
A simple solution procedure is to enumerate all possible
choices for αk,n that meet constraint (12). This is called the
extensive formulation of the problem. Each choice defines
a SDMA set s and κ = |s| and here, we present a solu-
tion technique for the subproblems with given s. For each
s, the problem separates into κ independent problems to
compute the optimal beamforming vector wk,n,s for each
user k ∈ s. For each user k ∈ s we know the set of chan-
nel vectors for the other members of s and we collect these
vectors in the (κ − 1) ×MmatrixHk,n,s. Problem (20–23)
can then be rewritten as

min
s

fn,s (24)

fn,s =
∑
k∈s

f ∗
k,n,s (25)

where f ∗
k,n,s is given by the solution of the optimization

f ∗
k,n,s = min

wk,n,s
−c′k log2

(
1 + |hkwk,n,s|2

) + λ‖wk,n,s‖2
(26)

Hk,n,swk,n,s = 0 (27)

where c′k = ck + μk , wk,n,s is the beamforming vector
for user k on subcarrier n for SDMA set s, and wn,s is
the vector made up by the column stacking of the vec-
tors wk,n,s for the κ users in s. Note that constraint (21)
is automatically satisfied by the construction of s, con-
straint (23) simply drops out since wk,n,s = 0 for k �∈ s
and constraint (22) remains only for k ∈ s, but we write it
as (27) because we are considering only users that belong
to SDMA sets.

This is certainly not a feasible real-time algorithm, but
for realistic values of K and M the number of SDMA
sets is still manageable and the optimization sub-problem
(24–27) is a small nonlinear program with M variables
and κ − 1 linear constraints. It can thus be solved quickly
by a number of techniques. Still, the overall computation
load can be quite large. There will be κ such problems to
solve for each SDMA set, and there are S = ∑M

i=1
(K
i
)
such

sets for each of the N subcarriers so that we have to solve
the problem κ × S × N times, and this for each iteration
of the subgradient algorithm. Clearly, any simplification
of the beamforming subproblem can reduce the overall
computation time significantly.

3.3 Approximate solution to the beamforming problem
This can be done by the following construction. Instead
of searching in the whole orthogonal subspace of Hk,n,s
as defined by (27), we pick a direction vector in that sub-
space and search only on its support. This will give a
good approximation to the extent that the direction vec-
tor is close to the optimal vector. The choice of direction is
motivated by the fact that the objective function depends
only on the product hkwk,n,s. We then introduce a new
independent variable

qk,n,s = hkwk,n,s (28)

and because this variable is not independent of wk,n,s,
we add (28) as a constraint. We then get the equivalent
problem

max
wk,n,s,qk,n,s

c′k log2
(
1 + |qk,n,s|2

) − λ‖wk,n,s‖2 (29)

hkwk,n,s = qk,n,s (30)

Hk,n,swk,n,s = 0. (31)
Constraints (30) and (31) can then be rewritten in the
standard form Gk,n,swk,n = bk,n,s where the Gk,n,s matrix
is the concatenation of hk and Hk,n,s and bk,n,s =
[ qk,n,s, 0, 0 . . . 0]T .
Since we are proposing to transform the constrained

optimization over the κ variables into an unconstrained
optimization over qk,n,s only, we must be able to express
wk,n,s as a function of qk,n,s. The linear system being under-
determined, this is obviously not unique. We propose
to use G+

k,n,s, the pseudo-inverse of Gk,n,s, for the back-
transformation wk,n,s = G+

k,n,sbk,n,s. The pseudo-inverse
picks the vector of minimum norm compatible with the
linear system. In other words, choosing this transforma-
tion will minimize ‖wk,n,s‖ so that it is minimizing the
power term in the objective function in (29). Because λ ≥
0, this has the effect of contributing to the maximization
of f ∗

k,n,s. Note that this technique provides only an approx-
imate solution of the beamforming problem; we cannot
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invoke Theorem 1 from [20] which shows that in cer-
tain cases, the pseudo-inverse transformation is optimal.
A strong assumption for the theorem is that the objec-
tive function depends only on the qk,n,s variable, which
is not the case here since (29) also depends on ‖wk,n,s‖2.
However, we observed from numerical results that the
difference between the pseudo-inverse solution and the
optimal solution is small. With this approximation we fix
the direction of the beamforming vectors to

wk,n,s = G+
k,n,sbk,n,s

= qk,n,s[G+
k,n,s]1

where [G+
k,n,s]1 denotes the first column of G+

k,n,s. Now,
we can obtain a problem formulation in terms of the user
powers only by replacing the following expression in (29):

‖wk,n,s‖2 = γ 2
k,n,spk,n,s, (32)

where γk,n,s = ‖[G+
k,n,s]1 ‖ and pk,n,s = |qk,n,s|2. Adding the

constraint pk,n,s ≥ 0, we get the equivalent problem

max
pk,n,s

c′k log(1 + pk,n,s) − λγ 2
k,n,spk,n,s (33)

pk,n,s ≥ 0 (34)

which has the solution

pk,n,s = max
{
0,

c′k
λγ 2

k,n,s
− 1

}
(35)

so that the computation time is basically that for comput-
ing G+

k,n,s. Also note that using G+
k,n,s we can also find the

optimal beamforming vectors for all users in s, the only
difference being that γk,n,s is computed using the column
of G+

k,n,s corresponding to the channel vector of this user.

3.4 Solving the dual problem
To summarize, the dual function �(λ,μ) is obtained for
the current values of the multipliers by finding for each
subcarrier n = 1, . . . ,N the optimal SDMA set s∗(n) to
the minimization problem in (24), where

fn,s(λ,μ) = −
∑
k∈s

[
c′k log

(
1 + pn,s,k

) − λγ 2
k,n,spk,n,s

]
(36)

and pk,n,s is given by (35). Substituting back in (17), the
dual function is

�(λ,μ) = −λP̌ +
K∑

k=1
μkďk +

N∑
n=1

min
s

fn,s(λ,μ) (37)

with fn,s given by (36). For any value of the dual vari-
ables (λ,μ)we can determine the optimal primal variables
(α,w); α is obtained by the optimal subcarrier assignment
vector s(n) after performing the minimization over s in

(37), and the optimal beamforming vectors w∗
n,k for the

users k ∈ s∗(n) are given by

w∗
n,k = G+

k,n,s∗(n)

[
p1/2k,n,s∗(n)

, 0, . . . , 0
]T

. (38)

The largest part of the computation to evaluate the dual
function is the calculation of G+

k,n,s which has to be done
for each subchannel and each possible SDMA set. The
number of evaluations can become quite large but the size
of each matrix is relatively small so that the calculation
remains feasible for medium-size networks. Furthermore,
while solving the dual problem requires multiple subgra-
dient iterations, the calculation of the pseudo-inverses is
independent of the value of the multipliers. This means
that the calculation of G+

k,n,s can be done only once in the
initialization step of the subgradient procedure.

Algorithm 1. Calculation of the dual problem

Construct the set S of all subsets of users of size
1 ≤ κ ≤ M
for all n = 1 . . .N do
for all s ∈ S do
for all k ∈ s do

Compute the pseudo-inverse G+
k,n,s and γk,n,s

end for
end for

end for
Choose an initial value λ0 and μ0

Subgradient iterations. We set a limit of Im on the
number of iterations
for all i = 1 . . . Im do
Solve the N subproblems (24) to compute the dual

function
Compute the subgradients:
g(k)
μ = ďk − ∑

n rk,n
gλ = ∑

n
∑

k∈s∗(n) ‖w∗
k,n‖2 − P̌

if ‖gμ‖ ≤ ε and ‖gλ‖ ≤ ε then
Exit. A dual optimal solution has been found.

else
Update the multipliers
λi+1 =[ λi + δgλ]+
μi+1 =[μi + δgμ]+

end if
end for
Exit. A dual optimal solution was NOT found.

Note that if the algorithm finds an optimal solution,
the corresponding primal computed from the optimiza-
tion of the Lagrange function will be feasible since the
subgradients g(k)

μ and gλ are small . We use the (some-
what inappropriate) expression “dual feasible” to denote
such a solution. If, on the other hand, the algorithm stops
before reaching the optimum, the primal will generally not
be feasible.



Perea-Vega et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:51 Page 8 of 16
http://jwcn.eurasipjournals.com/content/2013/1/51

Algorithm 1 finds the optimal dual variables (λ∗,μ∗)
that solve the dual problem (18) using the subgradient
method [19] with a fixed step size δ and therefore yields
an upper bound to problem (9–15). In Algorithm 1, the
pseudo-inverse matrices G+

k,n,s can be computed by any
number of well known algorithms. Here, we have used the
Matlab command pinv [21]. Note that this algorithm can
be used to solve the beamforming problem or equivalently
the power allocation problem for a fixed SDMA set assign-
ment. The only difference is that (24) becomes trivial since
there is only one possible SDMA set per subcarrier.
It is not possible to evaluate the overall complexity of

Algorithm 1 because we don’t have a bound on the num-
ber of dual iterations. We can nevertheless give a bound
on the complexity of one iteration since it is dominated
by the pseudo-inverse matrices computation. We have to
compute NS ∼ NKM matrix inversions each one with
complexity O(M3), giving a total computational complex-
ity O(NKMM3). Computing the subgradient vectors and
updating the dual variables have much lower complexity
than the pseudo-inverse matrices computation.

3.5 Analysis of the dual function
Lets denote�∗ the maximum of the dual function�(λ,μ)

over (λ,μ) ≥ 0. If U1 is the weighted sum-rate objec-
tive function achieved by any feasible point in the primal
problem and U∗ its optimum value, then the following
inequalities hold [22]

U1 ≤ U∗ ≤ −�∗ ≤ −�(λ,μ) (39)

The value −�∗, or any feasible approximation −�(λ,μ)

to it, is thus an upper bound to the optimum value of the
primal problemU∗. Thus,−�∗ can be used to benchmark
any other solution method.
Figure 1 shows a contour plot of the dual function

�(λ,μ) for the case of one RT user. The diamond marker
shows the maximum.
We can get some insight on the shape of the dual func-

tion from Figure 2, where we plotted the function with
respect to μ for a fixed value of λ. The solid line curve cor-
responds to the same dual function as in Figure 1, where
the rate constraint is active, ď1 = 50 bps/Hz. We see that
the dual function goes through a maximum at μ = 0.24.
We have also shown the case where we increase the min-
imum rate constraint so much that the problem becomes
infeasible, e.g., we make ď1 = 100 bps/Hz. As expected
from duality theory, the dual function has no maximum
since limμ→∞ �(λ,μ) = ∞ as shown by the dash-dotted
curve. Finally, the dashed curve at the bottom corresponds
to ď1 = 0 bps/Hz such that the constraint is inactive
and the solution where the maximum occurs is located at
μ1 = 0.
For completeness we show in Figure 3 the dual func-

tion as a function of λ when the rate constraints are

feasible. The dual function increases rapidly and reaches a
maximum at λ = 1.83.

3.6 Dual-based primal feasible method
The SDMA set selection and beamforming vectors found
by Algorithm 1 do not always provide a primal feasible
solution. The rate or power constraints might be violated
whenever the algorithm stops because the number of iter-
ations has been reached before the convergence rule is
met. In this subsection, we propose a simple procedure to
obtain a feasible point to problem (9–15) from the dual
solution found with Algorithm 1. This point is not optimal
but because we start from the dual optimal solution, we
expect that it will be close to the optimal solution. Obvi-
ously this will give us a lower bound to the optimal primal
solution.

Algorithm 2. Calculating a feasible point from the
dual solution

Solve the dual problem (18–19) using Algorithm 1.
This yields the optimal dual variables λ∗,μ∗

k and a
SDMA set assignment vector s∗(n) for each
subchannel n.
Set so0(n) = s∗(n)

Evaluate total power and user rate constraints
(10–11)
if All constraints are met then
Exit. A feasible solution has been found.

end if
Compute power allocation problem for so0(n) and
evaluate total power and user rate constraints (10–11)
if All constraints are met then
Exit. A feasible solution has been found.

end if
Compute the multipliers μk for users k such that
rk < ďk
for j = 1 to J do

μk = μk + δ

Find soj = argmins{fn,s}
where fn,s is given by (25) for the current dual

variables λ,μ
Let soj (n) be the SDMA assignment found

if soj (n) �= soj−1(n) then
We have found a new SDMA assignment
Compute power allocation problem for soj (n) and

evaluate total power and user rate constraints (10–11)
if All constraints are met then

Exit. A feasible solution has been found.
end if

end if
end for
Exit. A feasible solution was not found.

Algorithm 2 summarizes this method. The algorithm
begins by solving the dual problem (18–19) using
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Algorithm 1. If the solution is not feasible either directly
or by recomputing the power allocation for the SDMA
set assignment found in the dual problem, the algo-
rithm performs a search by increasing the dual variables
associated to the users whose QoS constraints are not
met until a new SDMA set assignment is found. It then
solves the power allocation problem for this new SDMA
set assignment and checks if the minimum rate con-
straints are met. The search for new SDMA sets continues
using this method until a feasible SDMA set assign-
ment is found or a maximum number of iterations is
reached.
Algorithm 2 invokes Algorithm 1 which has com-

plexity O(NKMM3). Assuming that the maximum num-
ber of iterations is fixed independently of the problem
parameters, the computational complexity of the feasible
point search is O(NKM) for the subcarrier reassignment
and O(N(D + K)) for the power allocation. These are
lower than the computational complexity of Algorithm 1.
Therefore, the computational complexity of Algorithm 2
is also O(NKMM3).

In contrast to the enumeration method described in
Section 2.3 which performs an enumeration of all possi-
ble SDMA set assignments, the dual-based Algorithm 2
is a method that finds new candidate SDMA set assign-
ments close to the dual optimal and then uses them to
solve a simple power allocation problem until the rate and
power constraints are met. This makes the search for a
near-optimal feasible point much faster than finding the
exact solution.

4 Performance analysis
In this section, we present some numerical results on the
performance of the dual-based algorithm and the accu-
racy of the upper and lower bounds. To show how they can
be used to evaluate heuristic algorithms, we also compare
them with the solution provided by a weight adjustment
method described in Section 4.2.

4.1 Convergence of the dual algorithm
First we present in Figure 4 the value of the dual func-
tion and Lagrange multipliers as a function of the number
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Figure 4 Dual function andmultipliers forM = 3,K = 16,N = 16, P̌ = 20 dBm,D = 1 and ď1 = 80 bps/Hz.

of iterations for a given channel realization. The corre-
sponding transmit power and the rate received by the RT
user are shown in Figure 5. The parameters used for the
calculation are listed in the figure titles.
We see that the algorithm converges very quickly to a

solution that is both close to the minimum value and fea-
sible. This is typical of several other configurations, except
that the number of iteration increases with the number of
RT users.

4.2 Weight adjustment heuristic
As discussed in Section 1.1, several RA algorithms provide
support for users with RT traffic by increasing the user

weights in the utility function until they receive enough
transmission resources. In this section, we describe a
generic weight adjustment method which will be used
to show that this technique leaves much room for
improvement.

Algorithm 3. Weight adjustment algorithm

Solve RA problem (9–15) without minimum rate
constraints (11)
c′ ← c
Let rk be the achieved rate for user k at every iteration
iteration ← 1

(d
B

m
)

(b
ps

/H
z)

Figure 5 Power and rate constraints forM = 3,K = 16,N = 16, P̌ = 20dBm,D = 1 and ď1 = 80 bps/Hz.



Perea-Vega et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:51 Page 12 of 16
http://jwcn.eurasipjournals.com/content/2013/1/51

while (rk < ďk for one or more users k ∈ D) AND
(iteration ≤ Ī) do
Increase user weight using c′k = c′k + ε

(
ďk − rk

)
for users in need, where 0 < ε ≤ 1
Solve RA problem (9–15) without minimum rate

constraints (11) using user weights c’
iteration ← iteration +1

end while

We want to find a set of weights in the utility func-
tion (9) such that the rate requirements of the RT users
are met when we solve problem (9–15) without the rate
constraints (11). Also, the set of weights must not be very
different from one user to the other in order to maximize
the multi-user diversity gain. Algorithm 3 implements a
generic method that can do this. It increases the user
weights for RT users until enough resources are allocated
to meet the minimum rate requirements. The parameter ε

controls howmuch the weights are increased with respect
to the rate bounds. The rates achieved by Algorithms 2
and 3 are different since they solve different problems.
Algorithm 3 can be seen as solving problem (9–15) by
using a linear penalty method for constraints (11) of the
form

Pk = min
{
0, rk − ďk

}
. (40)

The modified objective function is then

UP =
∑
k

ckrk + Pk

=
∑
k

ckrk + ε
∑

k|rk<ď

(rk − ď). (41)

At each iteration of the penalty method, whenever rate
constraints are active, the solution of (41) cannot be
smaller than that of (9–15) since it is a relaxation. Notice
that problem (41) is quite simple since it has a single con-
straint for the transmit power but it has to be solved many
times to adjust the weights of the real time users. In weight
adjustment algorithms such as [13], the user weights are
increased at each time slot using an increasing function of
the packets delay, so the computation task is distributed
over time. However, this distributed approach does not
guarantee that the rate requirements are met in a given
time slot which can lead to delay violations and jitter.

4.3 Parameter setup andmethodology
We now present the method and parameter values used
to compare the performance of the different methods to
solve Problem (9). We used a Rayleigh fading model to
generate the user channels such that each component
of the channel vectors hk,n are i.i.d. random variables
distributed as CN (0, 1). We also assumed independent
fading between users, antennas and subcarriers. Unless

Table 1 Average performance gap against the dual
optimal upper bound for small system configuration

Method Minimum rate (bps/Hz)

13.33 16.66 20

Dual-based upper bound (bps/Hz) 49.13 47.12 40.8

Primal enum. gap (%) 0.57 0.55 0.10

Dual-based feas. gap (%) 0.57 0.59 0.04

Weight mod. gap (%) 0.68 0.71 0.15

otherwise noted, we used a configuration with M = 3
antennas, K = 16 users and N = 16 subcarriers. We have
only one RT user when we examine the effect of various
parameters and we also look at the impact of increasing
the number of RT users. The minimum rate constraint
was set at 40 bps/Hz unless otherwise stated.We also fixed
the power constraint to P̌ = 20 dBm and used a large-scale
attenuation of 0 dB for all users. The user weights in (9)
were set to ck = 1 for all users. The results are the aver-
age over the feasible cases from 100 independent channel
realizations.
We compared the performance of the different meth-

ods for various scenarios where we increased the resource
requirements for the RT users until the minimum rate
requirements can no longer be met for all RT users. For
each scenario and channel realization, the upper bound
was computed from the dual solution using Algorithm 1
described in Section 3.4. For small systems, we also found
the exact solution using the primal enumeration method
given in Section 2.3. We also computed the lower bound
given by dual-based primal feasible Algorithm 2 and
the heuristic solution provided by the weight adjustment
Algorithm 3 described in Sections 3.6 and 4.2. We use the
upper bound given by the dual optimal solution as the
reference point when computing the gap when the exact
solution is not available.

4.4 Single user, increasing minimum rate
In this first scenario, we have a single RT user and we
increase its minimum rate ď1. First we consider a small
system with K = 4 users and N = 2 subcarriers where
it is possible to compute an exact solution. We present
in Table 1 the average gap in percent between the three
methods used to find feasible solutions against the dual

Table 2 Average total rate gap as a functionminimum rate
requirement

Method Minimum rate (bps/Hz)

80 100 120

Total rate gap against the upper bound (%)

Dual-based feas. 0.24 0.23 0.21

Weight mod. 9.49 7.30 3.36
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Figure 6 Average total rate as a function of the minimum rate requirements.

upper bound for a small system. As the requiredminimum
rate increases from 13.33 to 20 bps/Hz, the upper bound
decreases as more resources need to be assigned to the
RT user until the problem is no longer feasible. For this
small configuration, we see that all methods give excellent
results and the duality gap is very small.
In the remaining results, we use a larger system with

K = 16 users and N = 16 subcarriers. With these val-
ues, it is no longer possible to use the primal enumeration
method and we compute the gap relative to the dual upper

bound. We present in Table 2 the difference in percentage
between the bound and the solutions of the dual feasible
and the weight adjustment algorithms. The dual feasible
algorithm gives a lower bound within 0.25% of the dual
upper bound while the weight adjustment solutions dif-
ference can be almost 10%. As discussed in Section 4.2,
this is due to the fact that the weight adjustment algorithm
stops as soon as it finds a feasible solution and does not
have the option of finding a better assignment. As a result,
the objective does not change much when the minimum
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Figure 7 Average total rate as a function of RT user large-scale channel attenuation.
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Table 3 Average total rate gap as a function of RT user
large-scale channel attenuation

Method RT user attenuation (dB)

0 5 10

Total rate gap against the upper bound (%)

Dual-based feas. 0.16 0.70 0.82

Weight mod. 9.53 32.95 52.35

rate is increased. This can be seen from Figure 6 which
shows the sum rate achieved by the dual feasible algorithm
and the weightmodificationmethod against theminimum
rate requirement.

4.5 Single user, increasing attenuation
As the user moves away from the BS and the channel
attenuation increases, the RA algorithm dedicates more
resources to the RT user until the problem is unfeasible.
Figure 7 shows the average total rate when the large-
scale channel attenuation of the RT user varies from 0 to
15 dB. The results show that for all SNR, the dual lower
bound provides a tight solution with the upper bound
while the weight adjustment method shows a large perfor-
mance gap. Table 3 shows the error in percentage between
the objective and the upper bound. For an attenuation of
15 dB, neither method is able to find a feasible solution;
the problem is feasible because the dual upper bound is
around 140, but the algorithms cannot find a solution.
That is, Algorithm 1 for the dual upper bound finds a
solution as long as the primal problem is feasible. On the
other hand, Algorithm 2 cannot find a solution when the
solution point is close to the infeasibility region. In that

case, the algorithm exits declaring that a feasible solution
could not be found. Also, note that the proposed dual-
based algorithms provides a near-optimal solution to the
ZF Problem (9–14) for all SNRs where a feasible solution
can be found by the algorithm.
Figure 7 shows average sum rates. The average is per-

formed over the channel realizations that provide feasible
points. When the attenuation of the RT user is low, most
of the channel realizations produce feasible points. When
it is high, some of the channel realizations do not produce
feasible points and are discarded. For example, in Figure 7
when the attenuation is 15 dB, none or very few of the
channel realizations produce feasible points. Therefore,
Figure 7 does not show a sum rate for that point.

4.6 Increasing number of RT users
Finally, Figure 8 shows the upper dual bound, the lower
bound and the solution given by weight adjustment meth-
ods as a function of the number of RT users. Table 4 lists
the performance gap against the dual bound in percent-
age. The dual feasible lower bound is again very close to
the upper bound. Meanwhile, we can see that the perfor-
mance of the weight adjustment method quickly degrades
when the number of RT users increases. It cannot find fea-
sible points with 6 or 7 RT users while the dual algorithm
yields solutions for these values within 3.52 % of the upper
bound.
For a single RT user, we have seen in Tables 2 and 3

that the difference between the upper and lower solution
is small. In Figure 8, we see that this difference increases
for three or more RT users. Still, this growth is not large
and we can consider that a 3.52% is an acceptable error
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Figure 8 Average total rate as a function of the number of RT users.
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Table 4 Average total rate gap as a function of the number
of RT users

Method Number of RT users

1 2 3 4 5 6 7

Total rate gap against the upper bound (%)

Dual feas. 0.16 0.61 2.09 2.41 3.52 3.20 3.43

Weight mod. 3.5 3.5 6.52 13.86 22.71 - -

tolerance. Based on this, we can claim that it is possible to
find a quasi-optimal solution to problem (9–15) with the
proposed method, albeit with an off-line algorithm.
Furthermore, the results show that the weight modifica-

tion method has a large performance gap which becomes
more significant as the number of RT users increase. Also,
the dualmethod can find feasible solutions for cases where
the weight adjustment method cannot. This shows that
the weight modification method should be used carefully
for RA in OFDMA-SDMA systems with RT users and that
more efficient heuristics should be developed to approach
the performance of the dual-based feasible solution.

5 Conclusion
In this study, we proposed a method to compute
the beamforming vectors and the user selection in an
OFDMA-SDMA MISO system with minimum rate
requirements for some RT users. We gave a rigorous
mathematical formulation of the zero-forcing model and
then used a Lagrangian relaxation of the power and rate
constraints to solve the dual problem using a subgradi-
ent algorithm. The Lagrange decomposition yields sub-
problems separated per subcarrier, SDMA sets and users
which substantially reduces the computational complex-
ity. We obtained a simple expression of the dual function
for the beamforming problem for a given SDMA set
based on a pseudo-inverse condition on the beamform-
ing vectors. The dual optimum can then be used as a
benchmark to compare against any other solution meth-
ods and heuristics. The dual function also gives us a better
understanding of the problem. Its shape is related to the
rate constraint activation and problem feasibility, and it
also justifies the splitting of the subcarrier assignment
and power allocation processes used in several heuristic
methods.
We then proposed an algorithm which finds a feasible

point by starting from the dual-based optimum solution
and searching among the dual variables of the rate con-
straints. Numerical results indicate that the two bounds
are tight so that the feasible point is near-optimal solu-
tion. As a point of comparison, we also evaluated the
performance of a weight adjustment method which uses
weight adjustments in the objective function to achieve
the required rates. Our results show that the performance
gap of this approach is large and grows when the SNR of a

single RT user increases or when the number of RT users
increases.
In addition, the weight adjustment method requires

many time slots to adjust the weights and schedule real
time users. The dual-based method explicitly includes the
minimum rate constraints which allows RT users to be
scheduled in the current slot, which decreases the overall
packet delay and jitter.
The significant gap between the weight adjustment algo-

rithm and the optimal RA solution, suggests that there is
a need to find better heuristics. The dual approach looks
promising to guide the design of efficient novel heuris-
tics. To implement the RA algorithm in real time, we also
need to design fast methods to reduce the number of
SDMA sets to be searched. The design of these heuris-
tic algorithms is outside the scope of this article and is
part of our current efforts. Finally, the upper and lower
bounds also provide a very useful benchmark to compare
the performance of any heuristic method.
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6079, succ. centre-ville, Montréal, QC, H3C 3A7, Canada. 2GERAD Group for
Research in Decision Analysis, 3000, chemin de la Côte-Sainte-Catherine,
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