2,749 research outputs found

    On certain finiteness questions in the arithmetic of modular forms

    Get PDF
    We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of p-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that for fixed N, m, and prime p with p not dividing N, there is only a finite number of reductions modulo p^m of normalized eigenforms on \Gamma_1(N). We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3: restructered parts of the article; v4: minor corrections and change

    Nonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model

    Full text link
    We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasi-static driving of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter) exhibit the same universal behavior as this model. It also appears as a limit in the field theory of elastic manifolds. Here we discuss predictions of the ABBM model for monotonous, but otherwise arbitrary, time-dependent driving. Our main result is an explicit formula for the generating functional of particle velocities and positions. We apply this to derive the particle-velocity distribution following a quench in the driving velocity. We also obtain the joint avalanche size and duration distribution and the mean avalanche shape following a jump in the position of the confining spring. Such non-stationary driving is easy to realize in experiments, and provides a way to test the ABBM model beyond the stationary, quasi-static regime. We study extensions to two elastically coupled layers, and to an elastic interface of internal dimension d, in the Brownian force landscape. The effective action of the field theory is equal to the action, up to 1-loop corrections obtained exactly from a functional determinant. This provides a connection to renormalization-group methods.Comment: 18 pages, 3 figure

    Magnetic properties of antiferromagnetically coupled CoFeB/Ru/CoFeB

    Full text link
    This work reports on the thermal stability of two amorphous CoFeB layers coupled antiferromagnetically via a thin Ru interlayer. The saturation field of the artificial ferrimagnet which is determined by the coupling, J, is almost independent on the annealing temperature up to more than 300 degree C. An annealing at more than 325 degree C significantly increases the coercivity, Hc, indicating the onset of crystallization.Comment: 4 pages, 3 figure

    Interacting crumpled manifolds

    Full text link
    In this article we study the effect of a delta-interaction on a polymerized membrane of arbitrary internal dimension D. Depending on the dimensionality of membrane and embedding space, different physical scenarios are observed. We emphasize on the difference of polymers from membranes. For the latter, non-trivial contributions appear at the 2-loop level. We also exploit a ``massive scheme'' inspired by calculations in fixed dimensions for scalar field theories. Despite the fact that these calculations are only amenable numerically, we found that in the limit of D to 2 each diagram can be evaluated analytically. This property extends in fact to any order in perturbation theory, allowing for a summation of all orders. This is a novel and quite surprising result. Finally, an attempt to go beyond D=2 is presented. Applications to the case of self-avoiding membranes are mentioned

    Antiferromagnetically coupled CoFeB/Ru/CoFeB trilayers

    Full text link
    This work reports on the magnetic interlayer coupling between two amorphous CoFeB layers, separated by a thin Ru spacer. We observe an antiferromagnetic coupling which oscillates as a function of the Ru thickness x, with the second antiferromagnetic maximum found for x=1.0 to 1.1 nm. We have studied the switching of a CoFeB/Ru/CoFeB trilayer for a Ru thickness of 1.1 nm and found that the coercivity depends on the net magnetic moment, i.e. the thickness difference of the two CoFeB layers. The antiferromagnetic coupling is almost independent on the annealing temperatures up to 300 degree C while an annealing at 350 degree C reduces the coupling and increases the coercivity, indicating the onset of crystallization. Used as a soft electrode in a magnetic tunnel junction, a high tunneling magnetoresistance of about 50%, a well defined plateau and a rectangular switching behavior is achieved.Comment: 3 pages, 3 figure

    THE PERIOD-DECLINE-RATE RELATION FOR PULSATING STARS

    Get PDF
    The relationships between the periods and the rate of decline in V and R for pulsating stars are investigated. It is shown that these relationships are useful for making preliminary estimates of periods for stars with little data. These estimates can then be used to optimize times of further observations

    O(N) Models with Topological Lattice Actions

    Get PDF
    A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss "weird" lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ\sigma-models). Amazingly, such "weird" lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.Comment: 7 pages, LaTex, 4 figures, 1 table, talk presented at the 31st Symposium on Lattice Field Theor

    Lattice Fluid Dynamics from Perfect Discretizations of Continuum Flows

    Full text link
    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes, and naturally live on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e. grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation, and is shown to represent the continuum flow exactly. For non-square cross sections we use a numerical iterative procedure to derive flow equations that are approximately perfect.Comment: 25 pages, tex., using epsfig, minor changes, refernces adde

    The nucleon spin and momentum decomposition using lattice QCD simulations

    Full text link
    We determine within lattice QCD, the nucleon spin carried by valence and sea quarks, and gluons. The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum carried by the quarks in the nucleon is Ju+d+s=0.408(61)stat.(48)syst.J_{u+d+s}{=}0.408(61)_{\rm stat.}(48)_{\rm syst.} and the gluon contribution is Jg=0.133(11)stat.(14)syst.J_g {=}0.133(11)_{\rm stat.}(14)_{\rm syst.} giving a total of JN=0.54(6)stat.(5)syst.J_N{=}0.54(6)_{\rm stat.}(5)_{\rm syst.} consistent with the spin sum. For the quark intrinsic spin contribution we obtain 12ΔΣu+d+s=0.201(17)stat.(5)syst.\frac{1}{2}\Delta \Sigma_{u+d+s}{=}0.201(17)_{\rm stat.}(5)_{\rm syst.}. All quantities are given in the MS\overline{\textrm{MS}} scheme at 2~GeV. The quark and gluon momentum fractions are also computed and add up to xu+d+s+xg=0.804(121)stat.(95)syst.+0.267(12)stat.(10)syst.=1.07(12)stat.(10)syst.\langle x\rangle_{u+d+s}+\langle x\rangle_g{=}0.804(121)_{\rm stat.}(95)_{\rm syst.}+0.267(12)_{\rm stat.}(10)_{\rm syst.}{=}1.07(12)_{\rm stat.}(10)_{\rm syst.} satisfying the momentum sum.Comment: Version published in PR
    corecore