1,699 research outputs found

    Random RNA under tension

    Full text link
    The Laessig-Wiese (LW) field theory for the freezing transition of random RNA secondary structures is generalized to the situation of an external force. We find a second-order phase transition at a critical applied force f = f_c. For f f_c, the extension L as a function of pulling force f scales as (f-f_c)^(1/gamma-1). The exponent gamma is calculated in an epsilon-expansion: At 1-loop order gamma = epsilon/2 = 1/2, equivalent to the disorder-free case. 2-loop results yielding gamma = 0.6 are briefly mentioned. Using a locking argument, we speculate that this result extends to the strong-disorder phase.Comment: 6 pages, 10 figures. v2: corrected typos, discussion on locking argument improve

    Lattice Fluid Dynamics from Perfect Discretizations of Continuum Flows

    Full text link
    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes, and naturally live on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e. grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation, and is shown to represent the continuum flow exactly. For non-square cross sections we use a numerical iterative procedure to derive flow equations that are approximately perfect.Comment: 25 pages, tex., using epsfig, minor changes, refernces adde

    Interacting crumpled manifolds

    Full text link
    In this article we study the effect of a delta-interaction on a polymerized membrane of arbitrary internal dimension D. Depending on the dimensionality of membrane and embedding space, different physical scenarios are observed. We emphasize on the difference of polymers from membranes. For the latter, non-trivial contributions appear at the 2-loop level. We also exploit a ``massive scheme'' inspired by calculations in fixed dimensions for scalar field theories. Despite the fact that these calculations are only amenable numerically, we found that in the limit of D to 2 each diagram can be evaluated analytically. This property extends in fact to any order in perturbation theory, allowing for a summation of all orders. This is a novel and quite surprising result. Finally, an attempt to go beyond D=2 is presented. Applications to the case of self-avoiding membranes are mentioned

    Super-rough phase of the random-phase sine-Gordon model: Two-loop results

    Full text link
    We consider the two-dimensional random-phase sine-Gordon and study the vicinity of its glass transition temperature TcT_c, in an expansion in small τ=(TcT)/Tc\tau=(T_c-T)/T_c, where TT denotes the temperature. We derive renormalization group equations in cubic order in the anharmonicity, and show that they contain two universal invariants. Using them we obtain that the correlation function in the super-rough phase for temperature T<TcT<T_c behaves at large distances as ˉ=Aln2(x/a)+O[ln(x/a)]\bar{} = \mathcal{A}\ln^2(|x|/a) + \mathcal{O}[\ln(|x|/a)], where the amplitude A\mathcal{A} is a universal function of temperature A=2τ22τ3+O(τ4)\mathcal{A}=2\tau^2-2\tau^3+\mathcal{O}(\tau^4). This result differs at two-loop order, i.e., O(τ3)\mathcal{O}(\tau^3), from the prediction based on results from the "nearly conformal" field theory of a related fermion model. We also obtain the correction-to-scaling exponent.Comment: 34 page

    Interacting Crumpled Manifolds: Exact Results to all Orders of Perturbation Theory

    Full text link
    In this letter, we report progress on the field theory of polymerized tethered membranes. For the toy-model of a manifold repelled by a single point, we are able to sum the perturbation expansion in the strength g of the interaction exactly in the limit of internal dimension D -> 2. This exact solution is the starting point for an expansion in 2-D, which aims at connecting to the well studied case of polymers (D=1). We here give results to order (2-D)^4, where again all orders in g are resummed. This is a first step towards a more complete solution of the self-avoiding manifold problem, which might also prove valuable for polymers.Comment: 8 page

    2-loop Functional Renormalization for elastic manifolds pinned by disorder in N dimensions

    Full text link
    We study elastic manifolds in a N-dimensional random potential using functional RG. We extend to N>1 our previous construction of a field theory renormalizable to two loops. For isotropic disorder with O(N) symmetry we obtain the fixed point and roughness exponent to next order in epsilon=4-d, where d is the internal dimension of the manifold. Extrapolation to the directed polymer limit d=1 allows some handle on the strong coupling phase of the equivalent N-dimensional KPZ growth equation, and eventually suggests an upper critical dimension of about 2.5.Comment: 4 pages, 3 figure

    Loop Model with Generalized Fugacity in Three Dimensions

    Full text link
    A statistical model of loops on the three-dimensional lattice is proposed and is investigated. It is O(n)-type but has loop fugacity that depends on global three-dimensional shapes of loops in a particular fashion. It is shown that, despite this non-locality and the dimensionality, a layer-to-layer transfer matrix can be constructed as a product of local vertex weights for infinitely many points in the parameter space. Using this transfer matrix, the site entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added, (v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes in the presentatio

    Functional renormalization group at large N for random manifolds

    Full text link
    We introduce a method, based on an exact calculation of the effective action at large N, to bridge the gap between mean field theory and renormalization in complex systems. We apply it to a d-dimensional manifold in a random potential for large embedding space dimension N. This yields a functional renormalization group equation valid for any d, which contains both the O(epsilon=4-d) results of Balents-Fisher and some of the non-trivial results of the Mezard-Parisi solution thus shedding light on both. Corrections are computed at order O(1/N). Applications to the problems of KPZ, random field and mode coupling in glasses are mentioned

    Avalanches in mean-field models and the Barkhausen noise in spin-glasses

    Full text link
    We obtain a general formula for the distribution of sizes of "static avalanches", or shocks, in generic mean-field glasses with replica-symmetry-breaking saddle points. For the Sherrington-Kirkpatrick (SK) spin-glass it yields the density rho(S) of the sizes of magnetization jumps S along the equilibrium magnetization curve at zero temperature. Continuous replica-symmetry breaking allows for a power-law behavior rho(S) ~ 1/(S)^tau with exponent tau=1 for SK, related to the criticality (marginal stability) of the spin-glass phase. All scales of the ultrametric phase space are implicated in jump events. Similar results are obtained for the sizes S of static jumps of pinned elastic systems, or of shocks in Burgers turbulence in large dimension. In all cases with a one-step solution, rho(S) ~ S exp(-A S^2). A simple interpretation relating droplets to shocks, and a scaling theory for the equilibrium analog of Barkhausen noise in finite-dimensional spin glasses are discussed.Comment: 6 pages, 1 figur
    corecore