2,305 research outputs found

    Real-Time Simulation of Large Open Quantum Spin Systems driven by Measurements

    Full text link
    We consider a large quantum system with spins 12\frac{1}{2} whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution of a 2-d Heisenberg antiferromagnet, which is driven to a disordered phase, either by sporadic measurements or by continuous monitoring described by Lindblad evolution.Comment: 5 pages, 7 figure

    SO(3) "Nuclear Physics" with ultracold Gases

    Full text link
    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S=3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.Comment: 34 pages, 9 figure

    Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

    Full text link
    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.Comment: 12 pages, 5 figures. Main text plus one basic introduction to the topic and one supplementary material on implementation. Final versio

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits

    Get PDF
    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.Comment: Published versio

    Antiferromagnetically coupled CoFeB/Ru/CoFeB trilayers

    Full text link
    This work reports on the magnetic interlayer coupling between two amorphous CoFeB layers, separated by a thin Ru spacer. We observe an antiferromagnetic coupling which oscillates as a function of the Ru thickness x, with the second antiferromagnetic maximum found for x=1.0 to 1.1 nm. We have studied the switching of a CoFeB/Ru/CoFeB trilayer for a Ru thickness of 1.1 nm and found that the coercivity depends on the net magnetic moment, i.e. the thickness difference of the two CoFeB layers. The antiferromagnetic coupling is almost independent on the annealing temperatures up to 300 degree C while an annealing at 350 degree C reduces the coupling and increases the coercivity, indicating the onset of crystallization. Used as a soft electrode in a magnetic tunnel junction, a high tunneling magnetoresistance of about 50%, a well defined plateau and a rectangular switching behavior is achieved.Comment: 3 pages, 3 figure

    Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension

    Full text link
    The functional RG for the random field and random anisotropy O(N) sigma-models is studied to two loop. The ferromagnetic/disordered (F/D) transition fixed point is found to next order in d=4+epsilon for N > N_c (N_c=2.8347408 for random field, N_c=9.44121 for random anisotropy). For N < N_c the lower critical dimension plunges below d=4: we find two fixed points, one describing the quasi-ordered phase, the other is novel and describes the F/D transition. The lower critical dimension can be obtained in an (N_c-N)-expansion. The theory is also analyzed at large N and a glassy regime is found.Comment: 4 pages, 5 figure

    Stability and distortions of liquid crystal order in a cell with a heterogeneous substrate

    Full text link
    We study stability and distortions of liquid crystal nematic order in a cell with a random heterogeneous substrate. Modeling this system as a bulk xy model with quenched disorder confined to a surface, we find that nematic order is marginally unstable to such surface pinning. We compute the length scale beyond which nematic distortions become large and calculate orientational correlation functions using the functional renormalization-group and matching methods, finding universal logarithmic and double-logarithmic distortions in two and three dimensions, respectively. We extend these results to a finite-thickness liquid crystal cell with a second homogeneous substrate, detailing crossovers as a function of random pinning strength and cell thickness. We conclude with analysis of experimental signatures of these distortions in a conventional crossed-polarizer-analyzer light microscopy.Comment: 27 pages, 15 figures, Published in PRE, with minor typos correcte

    Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

    Full text link
    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.Comment: 14 pages, 5 figures. Main text plus one general supplementary material and one basic introduction to the topic. Published versio

    Systematic Low-Energy Effective Field Theory for Electron-Doped Antiferromagnets

    Full text link
    In contrast to hole-doped systems which have hole pockets centered at (±π2a,±π2a)(\pm \frac{\pi}{2a},\pm \frac{\pi}{2a}), in lightly electron-doped antiferromagnets the charged quasiparticles reside in momentum space pockets centered at (πa,0)(\frac{\pi}{a},0) or (0,πa)(0,\frac{\pi}{a}). This has important consequences for the corresponding low-energy effective field theory of magnons and electrons which is constructed in this paper. In particular, in contrast to the hole-doped case, the magnon-mediated forces between two electrons depend on the total momentum P⃗\vec P of the pair. For P⃗=0\vec P = 0 the one-magnon exchange potential between two electrons at distance rr is proportional to 1/r41/r^4, while in the hole case it has a 1/r21/r^2 dependence. The effective theory predicts that spiral phases are absent in electron-doped antiferromagnets.Comment: 25 pages, 7 figure
    • …
    corecore