386 research outputs found
Extracting the rp-process from X-ray burst light curves
The light curves of type I X-ray bursts (XRBs) result from energy released
from the atmosphere of a neutron star when accreted hydrogen and helium ignite
and burn explosively via the rp-process. Since charged particle reaction rates
are both density and very temperature dependent, a simulation model must
provide accurate values of these variables to predict the reaction flow. This
paper uses a self-consistent one-dimensional model calculation with a constant
accretion rate of dM/dt=5e16g/s (0.045 Eddington) and reports on the detailed
rp-process reaction flow of a given burst.Comment: 4 pages, submitted to Nucl. Phys. A as part of the Nuclei in Cosmos 8
proceeding
The Influence of Reaction Rates on the Final p-Abundances
The astrophysical p-process is responsible for the origin of the proton rich
nuclei,which are heavier than iron. A huge network involving thousands of
reaction rates is necessary to calculate the final p-abundances. But not all
rates included in the network have a strong influence on the p-nuclei
abundances. The p-process was investigated using a full nuclear reaction
network for a type II supernovae explosion when the shock front passes through
the O/Ne layer. Calculations were done with a multi-layer model adopting the
seed of a pre-explosion evolution of a 25 mass star. In extensive simulations
we investigated the impact of single reaction rates on the final p-abundances.
The results are important for the strategy of future experiments in this field.Comment: 4 page
Thomas-Ehrman shifts in nuclei around ^{16}O and role of residual nuclear interaction
The asymmetry in the energy spectra between mirror nuclei (the Thomas-Ehrman
shifts) around O is investigated from a phenomenological viewpoint. The
recent data on proton-rich nuclei indicates that the residual nuclear
interaction is reduced for the loosely bound s-orbit by as much as 30%, which
originates in the broad radial distribution of the proton single-particle wave
function.Comment: to appear in Phys. Lett. B, with 3 eps figure
An Approximation for the rp-Process
Hot (explosive) hydrogen burning or the Rapid Proton Capture Process
(rp-process) occurs in a number of astrophysical environments. Novae and X-ray
bursts are the most prominent ones, but accretion disks around black holes and
other sites are candidates as well. The expensive and often multidimensional
hydro calculations for such events require an accurate prediction of the
thermonuclear energy generation, while avoiding full nucleosynthesis network
calculations. In the present investigation we present an approximation scheme
applicable in a temperature range which covers the whole range of all presently
known astrophysical sites. It is based on the concept of slowly varying
hydrogen and helium abundances and assumes a kind of local steady flow by
requiring that all reactions entering and leaving a nucleus add up to a zero
flux. This scheme can adapt itself automatically and covers situations at low
temperatures, characterized by a steady flow of reactions, as well as high
temperature regimes where a -equilibrium is established.
In addition to a gain of a factor of 15 in computational speed over a full
network calculation, and an energy generation accurate to more than 15 %, this
scheme also allows to predict correctly individual isotopic abundances. Thus,
it delivers all features of a full network at a highly reduced cost and can
easily be implemented in hydro calculations.Comment: 18 pages, LaTeX using astrobib and aas2pp4, includes PostScript
figures; Astrophysical Journal, in press. PostScript source also available at
http://quasar.physik.unibas.ch/preps.htm
Nuclear uncertainties in the NeNa-MgAl cycles and production of 22Na and 26Al during nova outbursts
Classical novae eject significant amounts of nuclear processed material into
the interstellar medium. Among the isotopes synthesized during such explosions,
two radioactive nuclei deserve a particular attention: 22Na and 26Al. In this
paper, we investigate the nuclear paths leading to 22Na and 26Al production
during nova outbursts by means of an implicit, hydrodynamic code that follows
the course of the thermonuclear runaway from the onset of accretion up to the
ejection stage. New evolutionary sequences of ONe novae have been computed,
using updated nuclear reaction rates relevant to 22Na and 26Al production.
Special attention is focused on the role played by nuclear uncertainties within
the NeNa and MgAl cycles in the synthesis of such radioactive species. From the
series of hydrodynamic models, which assume upper, recommended or lower
estimates of the reaction rates, we derive limits on the production of both
22Na and 26Al. We outline a list of nuclear reactions which deserve new
experimental investigations in order to reduce the wide dispersion introduced
by nuclear uncertainties in the 22Na and 26Al yields.Comment: 46 pages, 4 figures. Accepted for publication in The Astrophysical
Journa
Precise half-life measurement of 110Sn and 109In isotopes
The half-lives of 110Sn and 109In isotopes have been measured with high
precision. The results are T1/2 =4.173 +- 0.023 h for 110Sn and T1/2 = 4.167
+-0.018 h for 109In. The precision of the half-lives has been increased by a
factor of 5 with respect to the literature values which makes results of the
recently measured 106Cd(alpha,gamma)110Sn and 106Cd(alpha,p)109In cross
sections more reliable.Comment: 3 pages, 2 figures, accepted for publication in Phys. Rev C as brief
repor
Models for Type I X-Ray Bursts with Improved Nuclear Physics
Multi-zone models of Type I X-ray bursts are presented that use an adaptive
nuclear reaction network of unprecedented size, up to 1300 isotopes. Sequences
of up to 15 bursts are followed for two choices of accretion rate and
metallicity. At 0.1 Eddington (and 0.02 Eddington for low metallicity),
combined hydrogen-helium flashes occur. The rise times, shapes, and tails of
these light curves are sensitive to the efficiency of nuclear burning at
various waiting points along the rp-process path and these sensitivities are
explored. The bursts show "compositional inertia", in that their properties
depend on the fact that accretion occurs onto the ashes of previous bursts
which contain left-over hydrogen, helium and CNO nuclei. This acts to reduce
the sensitivity of burst properties to metallicity. For the accretion rates
studied, only the first anomalous burst in one model produces nuclei as heavy
as A=100, other bursts make chiefly nuclei with A~64. The amount of carbon
remaining after hydrogen-helium bursts is typically <1% by mass, and decreases
further as the ashes are periodically heated by subsequent bursts. At the lower
accretion rate of 0.02 Eddington and solar metallicity, the bursts ignite in a
hydrogen-free helium layer. At the base of this layer, up to 90% of the helium
has already burned to carbon prior to the unstable ignition. These
helium-ignited bursts have briefer, brighter light curves with shorter tails,
very rapid rise times (<0.1 s), and ashes lighter than the iron group.Comment: Submitted to the Astrophysical Journal (42 pages; 27 figures
Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability
The reaction rates of neutron capture reactions on light nuclei are important
for reliably simulating nucleosynthesis in a variety of stellar scenarios.
Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are
calculated in the framework of a hybrid compound and direct capture model. The
results are tabulated and compared with the results of previous calculations as
well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for
publication in Phys. Rev.
- …