12 research outputs found
Chapter Optical Coherence Tomography – Applications in Non- Destructive Testing and Evaluation
Optimizatio
Chapter Optical Coherence Tomography – Applications in Non- Destructive Testing and Evaluation
Optimizatio
MASMICRO micro-/nano-materials processing, analysis, inspection and materials knowledge management
A main goal of the 'Material Innovation and Testing' within MASMICRO is identification of the miniature/micro-materials which are formable, development of new materials for forming and machining, development of an integrated material-testing system, and study of material properties for design/analysis applications. Examples of collaborative work and results are presented regarding the processing of functional electrospun polymer micro-/nano-fibre structures and the characterization of their interface properties with tribological testing. By means of Optical Coherence Tomography, a non-destructive inspection approach for these micro-/nano-structured webs was developed and it is also documented in the paper. Further, an application example of Artifical Neural Networks (ANNs) is given, concerning the modelling of nanofibres material behaviour under tensile testing. It is shown how Artificial Intelligence approaches (Knowledge Based Systems - KBS and ANNs) can support, significantly, the representation and processing of materials' knowledge of both, symbolic type in the case of KBS and algorithmic type in the case of ANNs, for the cases dealt within the MASMICRO
Dielectric Function of Undoped and Doped Poly2-methoxy-5-(3 `,7 `-dimethyloctyloxy)-1,4-phenylene-vinylene] by Ellipsometry in a Wide Spectral Range
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements