5 research outputs found

    An Effector of RNA-Directed DNA Methylation in Arabidopsis Is an ARGONAUTE 4-and RNA-Binding Protein

    No full text
    DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes

    The Functions of RNA-Dependent RNA Polymerases in Arabidopsis

    Get PDF
    One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene transcripts, repetitive sequences, viruses, and mobile elements via RNA cleavage, translational inhibition, or transcriptional silencing through DNA methylation and heterochromatin formation. Early genetic screens in Arabidopsis were instrumental in uncovering numerous proteins required for these important regulatory pathways. Among the factors identified by these studies were RNA-dependent RNA polymerases (RDRs), which are proteins that synthesize siRNA-producing dsRNA molecules using a single-stranded RNA (ssRNA) molecule as a template. Recently, a growing body of evidence has implicated RDR-dependent RNA silencing in many different aspects of plant biology ranging from reproductive development to pathogen resistance. Here, we focus on the specific functions of the six Arabidopsis RDRs in RNA silencing, their ssRNA substrates and resulting RDR-dependent smRNAs, and the numerous biological functions of these proteins in plant development and stress responses

    Mechanische Eigenschaften

    No full text
    corecore